Equimorphy in varieties of distributive double -algebras
Czechoslovak Mathematical Journal (1998)
- Volume: 48, Issue: 3, page 473-544
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKoubek, Václav, and Sichler, Jiří. "Equimorphy in varieties of distributive double $p$-algebras." Czechoslovak Mathematical Journal 48.3 (1998): 473-544. <http://eudml.org/doc/30435>.
@article{Koubek1998,
abstract = {Any finitely generated regular variety $\mathbb \{V\}$ of distributive double $p$-algebras is finitely determined, meaning that for some finite cardinal $n(\mathbb \{V\})$, any subclass $S\subseteq \mathbb \{V\}$ of algebras with isomorphic endomorphism monoids has fewer than $n(\mathbb \{V\})$ pairwise non-isomorphic members. This result follows from our structural characterization of those finitely generated almost regular varieties which are finitely determined. We conjecture that any finitely generated, finitely determined variety of distributive double $p$-algebras must be almost regular.},
author = {Koubek, Václav, Sichler, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {distributive double $p$-algebra; variety; endomorphism monoid; equimorphy; categorical universality; distributive double -algebra; finitely determined variety; endomorphism monoid; equimorphy; categorical universality},
language = {eng},
number = {3},
pages = {473-544},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Equimorphy in varieties of distributive double $p$-algebras},
url = {http://eudml.org/doc/30435},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Koubek, Václav
AU - Sichler, Jiří
TI - Equimorphy in varieties of distributive double $p$-algebras
JO - Czechoslovak Mathematical Journal
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 3
SP - 473
EP - 544
AB - Any finitely generated regular variety $\mathbb {V}$ of distributive double $p$-algebras is finitely determined, meaning that for some finite cardinal $n(\mathbb {V})$, any subclass $S\subseteq \mathbb {V}$ of algebras with isomorphic endomorphism monoids has fewer than $n(\mathbb {V})$ pairwise non-isomorphic members. This result follows from our structural characterization of those finitely generated almost regular varieties which are finitely determined. We conjecture that any finitely generated, finitely determined variety of distributive double $p$-algebras must be almost regular.
LA - eng
KW - distributive double $p$-algebra; variety; endomorphism monoid; equimorphy; categorical universality; distributive double -algebra; finitely determined variety; endomorphism monoid; equimorphy; categorical universality
UR - http://eudml.org/doc/30435
ER -
References
top- 10.1090/S0002-9947-1984-0748830-6, Trans. Amer. Math. Soc. 285 (1984), 57–79. (1984) MR0748830DOI10.1090/S0002-9947-1984-0748830-6
- 10.1017/S0004972700021031, Bull. Austral. Math. Soc. 28 (1983), 305–318. (1983) MR0729763DOI10.1017/S0004972700021031
- 10.1007/BF02485824, Algebra Universalis 6 (1976), 121–129. (1976) Zbl0353.06002MR0419319DOI10.1007/BF02485824
- 10.1007/BF02485372, Algebra Universalis 8 (1978), 73–88. (1978) Zbl0381.06019MR0450160DOI10.1007/BF02485372
- Semigroups of isotone transformations, Uspekhi Math. Nauk 16 (1961), 157–162. (Russian) (1961) MR0131486
- Infinite image homomorphisms of distributive bounded lattices, Coll. Math. Soc. János Bolyai, 43. Lecture in Universal Algebra, Szeged 1983, North Holland, Amsterdam, 1985, pp. 241–281. (1985) MR0860268
- Algebras determined by their endomorphism monoids, Cahiers Topologie Gèom. Différentielle Catégoriques 35 (1994), 187–225. (1994) MR1295117
- 10.1017/S0017089500005887, Glasgow Math. J. 26 (1985), 121–131. (1985) MR0798738DOI10.1017/S0017089500005887
- 10.1017/S0017089500009411, Glasgow Math. J. 32 (1990), 329–340. (1990) MR1073673DOI10.1017/S0017089500009411
- Finitely generated universal varieties of distributive double -algebras, Cahiers Topologie Gèom. Différentielle Catégoriques 35 (1994), 139–164. (1994) MR1280987
- Priestley duals of products, Cahiers Topologie Gèom. Différentielle Catégoriques 32 (1991), 243–256. (1991) MR1158110
- The semigroup of endomorphisms of a Boolean ring, Semigroup Forum 4 (1972), 411–416. (1972) MR0272690
- 10.1007/BF02570772, Semigroup Forum 4 (1972), 78–82. (1972) Zbl0262.06011MR0297900DOI10.1007/BF02570772
- On recovering a bounded distributive lattices from its endomorphism monoid, Houston J. Math. 7 (1981), 525–529. (1981) MR0658568
- 10.1112/blms/2.2.186, Bull. London Math. Soc. 2 (1970), 186–190. (1970) Zbl0201.01802MR0265242DOI10.1112/blms/2.2.186
- 10.1093/qmath/26.1.215, Quart. J. Math. Oxford 26 (1975), 215–228. (1975) Zbl0323.06013MR0392731DOI10.1093/qmath/26.1.215
- Ordered sets and duality for distributive lattices, Ann. Discrete Math. 23 (1984), 36–60. (1984) Zbl0557.06007MR0779844
- Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North Holland, Amsterdam, 1980. (1980) MR0563525
- 10.4064/fm-68-1-31-50, Fund. Math. 68 (1970), 31–50. (1970) Zbl0197.28902MR0272686DOI10.4064/fm-68-1-31-50
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.