A suspension theorem for the proper homotopy and strong shape theories
The main result of the present paper is a classification theorem for finite-sheeted covering mappings over connected paracompact spaces. This theorem is a generalization of the classical classification theorem for covering mappings over a connected locally pathwise connected semi-locally 1-connected space in the finite-sheeted case. To achieve the result we use the classification theorem for overlay structures which was recently proved by S. Mardesic and V. Matijevic (Theorems 1 and 4 of [5]).
We introduce a new notion of covering projection E → X of a topological space X which reduces to the usual notion if X is locally connected. We use locally constant presheaves and covering reduced sieves to find a pro-groupoid π crs (X) and an induced category pro (π crs (X), Sets) such that for any topological space X the category of covering projections and transformations of X is equivalent to the category pro (π crs (X), Sets). We also prove that the latter category is equivalent to pro (π CX,...
If a paracompact Hausdorff space X admits a (classical) universal covering space, then the natural homomorphism φ: π₁(X) → π̌₁(X) from the fundamental group to its first shape homotopy group is an isomorphism. We present a partial converse to this result: a path-connected topological space X admits a generalized universal covering space if φ: π₁(X) → π̌₁(X) is injective. This generalized notion of universal covering p: X̃ → X enjoys most of the usual properties, with the possible exception of evenly...