Low-dimensional cohomology for categorical groups

B. A. R. Garzón; A. del Rio

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2003)

  • Volume: 44, Issue: 4, page 247-280
  • ISSN: 1245-530X

How to cite

top

Garzón, B. A. R., and del Rio, A.. "Low-dimensional cohomology for categorical groups." Cahiers de Topologie et Géométrie Différentielle Catégoriques 44.4 (2003): 247-280. <http://eudml.org/doc/91673>.

@article{Garzón2003,
author = {Garzón, B. A. R., del Rio, A.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {categorical group; braided categorical group; cohomology group},
language = {eng},
number = {4},
pages = {247-280},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Low-dimensional cohomology for categorical groups},
url = {http://eudml.org/doc/91673},
volume = {44},
year = {2003},
}

TY - JOUR
AU - Garzón, B. A. R.
AU - del Rio, A.
TI - Low-dimensional cohomology for categorical groups
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2003
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 44
IS - 4
SP - 247
EP - 280
LA - eng
KW - categorical group; braided categorical group; cohomology group
UR - http://eudml.org/doc/91673
ER -

References

top
  1. [1] Borceux, F.Handbook of categorical algebra 1,2. Cambridge University Press, 1994. Zbl0911.18001MR1291599
  2. [2] Breen, L.Théorie de Schreier supérieure. Ann. Scient. Éc. Norm. Sup.1992,,4e série, 25, 465-514. Zbl0795.18009MR1191733
  3. [3] Brown, R.; Gilbert, N.D.Algebraic models of 3-types and automorphisms structure for crossed modules. Proc. London Math. Soc.1989, 59(3), 51-73. Zbl0645.18007MR997251
  4. [4] Bullejos, M.; Cegarra, A.M.A 3-dimensional non-abelian cohomology with applications to homotopy classification of continuous maps. Canadian Journal of Mathematics1991, 43 (2), 265-296. Zbl0726.18009MR1113754
  5. [5] Carrasco, P.; Cegarra, A.M.Schreier theory for central extensions of categorical groups. Communications in Algebra1996, 24 (13), 4059-4112. Zbl0887.18005MR1414570
  6. [6] Carrasco, P.; Garzón, A.R.; Miranda, J.G.Schreier theory for singular extensions of categorical groups and homotopy classification. Communications in Algebra2000, 28 (5), 2585-2613. Zbl0969.18013MR1757484
  7. [7] Carrasco, P.; Garzón, A.R.Obstruction theory for extensions of categorical groups. Applied Categoriques Structures (to appear). Zbl1047.18009MR2057410
  8. [8] Cegarra, A.M.; Fernández, L.Cohomology of cofibred categorical groups. J. Pure Appl. Algebra1999, 143, 107-154. Zbl0944.18011MR1731040
  9. [9] Conduché, D.Modules croisés generalisés de longeur 2. J. Pure Appl. Algebra1984, 34, 155-178. Zbl0554.20014MR772056
  10. [10] Dedecker, P.Cohomologie non-abélienne. Séminaire de l'Institut Mathématique Lille, 1965. Zbl0135.02402
  11. [11] Garzón, A.R.; Miranda, J.G.Homotopy theory for (braided) cat-groups. Cahiers Top. et Geom. Diff. Cat.1997, XXXVIII-2, 99-139. Zbl0880.18006MR1454159
  12. [12] Garzón, A.R.; Inassaridze, H.Semidirect products of categorical groups. Obstruction theory. Homology, Homotopy and its applications2001, 3 (6), 111-138. Zbl0984.18005MR1854641
  13. [13] Garzón A.R.; Del Rio, A.The Whitehead categorical group of derivations. Georgian Math. J.2002, 9 (4), 709-721. Zbl1027.18004MR1971408
  14. [14] Garzón, A.R.; Inassaridze, H.; Del Rio, A.Derivations of categorical groups. Preprint 2002. Zbl1063.18006MR2116324
  15. [15] Gilbert, N.D. Derivations, automorphisms and crossed modules.Communications in Algebra1990, 18 (8), 2703-2734. Zbl0704.20045MR1074251
  16. [16] Hattory, A.On the groups Hn(S, G) and the Brauer group of commutative rings. Sci. Papers College Gen. Ed. Univ. Tokyo197828, 1-20. Zbl0383.13003MR498519
  17. [17] Hilton P.J.; Stammbach U.A course in Homological Algebra. Springer Verlag1970. Zbl0238.18006MR1438546
  18. [18] Joyal, A.; Street, R.Braided tensor categories. Advances in Math.1991, 82(1), 20-78. Zbl0817.18007MR1250465
  19. [19] Kasangian, S.; Vitale, E.M.Factorization systems for symmetric cat-groups. Theory and Applications of Categories2000, 7,(5), 47-70. Zbl0964.18002
  20. [20] Kelly, G.M.On Mac Lane's conditions for coherence of natural associativities, commutativities, etc. J. of Algebra1964, 1, 397-402. Zbl0246.18008MR182649
  21. [21] Mac Lane, S.Natural associativity and commutativity. Rice University Studies1963, 49, 28-46. Zbl0244.18008MR170925
  22. [22] Mac Lane, S.Homology. Springer, 1963. Zbl0818.18001
  23. [23] Mac Lane, S.Categories for the working mathematician, Second edition. Springer-Verlag, 1997. Zbl0906.18001MR1712872
  24. [24] Norrie, K.J.Actions and automorphisms of crossed modules. Bull. Soc. Math. France1990, 118, 129-146. Zbl0719.20018MR1087375
  25. [25] Rousseau, A.Extensions de Gr-catégories. Université Paris13, Thése de doctorat, 2000. 
  26. [26] Saavedra, N.Catégories tannakiennes. SpringerLecture Notes in Math. 1972, 265. Zbl0241.14008MR338002
  27. [27] Sinh, H.X.Gr-catégories. Université Paris VII, Thèse de doctorat, 1975. Zbl0428.18009
  28. [28] Ulbrich, K.H. GroupCohomology for Picard Categories. J. of Algebra1984, 91, 464-498. Zbl0554.18005MR769585
  29. [29] Vitale, E.M.A Picard-Brauer exact sequence of categorical groups. J. Pure Appl. Algebra2002, 175, 383-408. Zbl1055.14020MR1935985

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.