Finite commutative monoids of open maps
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1998)
- Volume: 39, Issue: 1, page 63-77
- ISSN: 1245-530X
Access Full Article
topHow to cite
topPultr, A., and Sichler, J.. "Finite commutative monoids of open maps." Cahiers de Topologie et Géométrie Différentielle Catégoriques 39.1 (1998): 63-77. <http://eudml.org/doc/91601>.
@article{Pultr1998,
author = {Pultr, A., Sichler, J.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {endomorphism monoids; Hausdorff spaces and open continuous mappings; Priestley spaces and continuous order preserving mappings; Hausdorff Heyting algebras and complete Heyting homomorphisms; symmetric directed graphs and strong homomorphisms; concrete categories with forgetful functors; concrete sums; Hausdorff categories},
language = {eng},
number = {1},
pages = {63-77},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Finite commutative monoids of open maps},
url = {http://eudml.org/doc/91601},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Pultr, A.
AU - Sichler, J.
TI - Finite commutative monoids of open maps
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1998
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 39
IS - 1
SP - 63
EP - 77
LA - eng
KW - endomorphism monoids; Hausdorff spaces and open continuous mappings; Priestley spaces and continuous order preserving mappings; Hausdorff Heyting algebras and complete Heyting homomorphisms; symmetric directed graphs and strong homomorphisms; concrete categories with forgetful functors; concrete sums; Hausdorff categories
UR - http://eudml.org/doc/91601
ER -
References
top- 1 J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, J. Wiley and Sons, New York, 1990. Zbl0695.18001MR1051419
- 2 B. Banaschewski, On pushing out frames, Comment. Math. Univ. Carolin.31 (1990), 13-21. Zbl0706.18003MR1056165
- 3 B. Banaschewski and A. Pultr, Variants of openness, Applied Categorical Structures2 (1994), 331-350. Zbl0810.54017MR1300720
- 4 Z. Hedrlín and J. Sichler, Any boundable binding category contains a proper class of mutually disjoint copies of itself, Algebra Universalis1 (1971), 97-103. Zbl0236.18003MR285580
- 5 J.R. Isbell, Atomless parts of spaces, Math. Scand.31 (1972), 5-32. Zbl0246.54028MR358725
- 6 A. Joyal and M. Tierney, An Extension of the Galois Theory of Grothendieck, Mem. Amer. Math. Soc.51 (1984). Zbl0541.18002MR756176
- 7 P.T. Johnstone, Stone Spaces, Cambridge University Press, Cambridge, 1982. Zbl0499.54001MR698074
- 8 S MacLane, Categories for the Working Mathematician, Springer-Verlag, New York, 1971. Zbl0705.18001MR354798
- 9 A.B. Paalman de Miranda, Topological representations of semigroups, in General Topology and its Relations to Modern Analysis and Algebra II, Proc. 2nd Prague Top. Symposium, Academia, Prague, 1967, pp. 276-282. Zbl0184.25901MR246281
- 10 H.A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc.2 (1970), 186-190. Zbl0201.01802MR265242
- 11 ____, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc.24 (1972), 507-530. Zbl0323.06011MR300949
- 12 ____, Ordered sets and duality for distributive lattices, Ann. Discrete Math.23 (1984), 36-90. Zbl0557.06007
- 13 A. Pultr and J. Sichler, Endomorphisms of complete Heyting algebras, Semigroup Forum54 (1997), 364-374. Zbl0882.06006MR1436853
- 14 A. Pultr and V. Trnková, Combinatorial, Algebraic andTopological Representations of Groups, Semigroups and Categories, North-Holland, Amsterdam, 1980. Zbl0418.18004MR563525
- 15 V. Trnková, Non-constant continuous mappings of metric or compact Hausdorff spaces, Comment. Math. Univ. Carolin.13 (1972), 283-295. Zbl0245.54040MR303486
- 16 ____, Strong embeddings of the categories of graphs into topological categories, in Recent Advances in Graph Theory (Proc. Symp. Prague1974), Academia, Prague, 1975, pp. 511-515. Zbl0333.18011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.