Finite commutative monoids of open maps

A. Pultr; J. Sichler

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1998)

  • Volume: 39, Issue: 1, page 63-77
  • ISSN: 1245-530X

How to cite

top

Pultr, A., and Sichler, J.. "Finite commutative monoids of open maps." Cahiers de Topologie et Géométrie Différentielle Catégoriques 39.1 (1998): 63-77. <http://eudml.org/doc/91601>.

@article{Pultr1998,
author = {Pultr, A., Sichler, J.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {endomorphism monoids; Hausdorff spaces and open continuous mappings; Priestley spaces and continuous order preserving mappings; Hausdorff Heyting algebras and complete Heyting homomorphisms; symmetric directed graphs and strong homomorphisms; concrete categories with forgetful functors; concrete sums; Hausdorff categories},
language = {eng},
number = {1},
pages = {63-77},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Finite commutative monoids of open maps},
url = {http://eudml.org/doc/91601},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Pultr, A.
AU - Sichler, J.
TI - Finite commutative monoids of open maps
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1998
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 39
IS - 1
SP - 63
EP - 77
LA - eng
KW - endomorphism monoids; Hausdorff spaces and open continuous mappings; Priestley spaces and continuous order preserving mappings; Hausdorff Heyting algebras and complete Heyting homomorphisms; symmetric directed graphs and strong homomorphisms; concrete categories with forgetful functors; concrete sums; Hausdorff categories
UR - http://eudml.org/doc/91601
ER -

References

top
  1. 1 J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, J. Wiley and Sons, New York, 1990. Zbl0695.18001MR1051419
  2. 2 B. Banaschewski, On pushing out frames, Comment. Math. Univ. Carolin.31 (1990), 13-21. Zbl0706.18003MR1056165
  3. 3 B. Banaschewski and A. Pultr, Variants of openness, Applied Categorical Structures2 (1994), 331-350. Zbl0810.54017MR1300720
  4. 4 Z. Hedrlín and J. Sichler, Any boundable binding category contains a proper class of mutually disjoint copies of itself, Algebra Universalis1 (1971), 97-103. Zbl0236.18003MR285580
  5. 5 J.R. Isbell, Atomless parts of spaces, Math. Scand.31 (1972), 5-32. Zbl0246.54028MR358725
  6. 6 A. Joyal and M. Tierney, An Extension of the Galois Theory of Grothendieck, Mem. Amer. Math. Soc.51 (1984). Zbl0541.18002MR756176
  7. 7 P.T. Johnstone, Stone Spaces, Cambridge University Press, Cambridge, 1982. Zbl0499.54001MR698074
  8. 8 S MacLane, Categories for the Working Mathematician, Springer-Verlag, New York, 1971. Zbl0705.18001MR354798
  9. 9 A.B. Paalman de Miranda, Topological representations of semigroups, in General Topology and its Relations to Modern Analysis and Algebra II, Proc. 2nd Prague Top. Symposium, Academia, Prague, 1967, pp. 276-282. Zbl0184.25901MR246281
  10. 10 H.A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc.2 (1970), 186-190. Zbl0201.01802MR265242
  11. 11 ____, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc.24 (1972), 507-530. Zbl0323.06011MR300949
  12. 12 ____, Ordered sets and duality for distributive lattices, Ann. Discrete Math.23 (1984), 36-90. Zbl0557.06007
  13. 13 A. Pultr and J. Sichler, Endomorphisms of complete Heyting algebras, Semigroup Forum54 (1997), 364-374. Zbl0882.06006MR1436853
  14. 14 A. Pultr and V. Trnková, Combinatorial, Algebraic andTopological Representations of Groups, Semigroups and Categories, North-Holland, Amsterdam, 1980. Zbl0418.18004MR563525
  15. 15 V. Trnková, Non-constant continuous mappings of metric or compact Hausdorff spaces, Comment. Math. Univ. Carolin.13 (1972), 283-295. Zbl0245.54040MR303486
  16. 16 ____, Strong embeddings of the categories of graphs into topological categories, in Recent Advances in Graph Theory (Proc. Symp. Prague1974), Academia, Prague, 1975, pp. 511-515. Zbl0333.18011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.