Infinitesimal and local structures for Banach spaces and its exponentials in a topos

Eduardo J. Dubuc; Jorge C. Zilber

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2000)

  • Volume: 41, Issue: 2, page 82-100
  • ISSN: 1245-530X

How to cite

top

Dubuc, Eduardo J., and Zilber, Jorge C.. "Infinitesimal and local structures for Banach spaces and its exponentials in a topos." Cahiers de Topologie et Géométrie Différentielle Catégoriques 41.2 (2000): 82-100. <http://eudml.org/doc/91632>.

@article{Dubuc2000,
author = {Dubuc, Eduardo J., Zilber, Jorge C.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {local structures; Banach spaces; synthetic differential geometry},
language = {eng},
number = {2},
pages = {82-100},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Infinitesimal and local structures for Banach spaces and its exponentials in a topos},
url = {http://eudml.org/doc/91632},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Dubuc, Eduardo J.
AU - Zilber, Jorge C.
TI - Infinitesimal and local structures for Banach spaces and its exponentials in a topos
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2000
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 41
IS - 2
SP - 82
EP - 100
LA - eng
KW - local structures; Banach spaces; synthetic differential geometry
UR - http://eudml.org/doc/91632
ER -

References

top
  1. [1] Bunge M., Dubuc E.J.Local Concepts in Synthetic Differential Geometry and Germ Representability, Lectures Notes in Pure and Applied Mathematics, Marcel Dekker, New York, (1989). Zbl0658.18004MR930679
  2. [2] Carboni G., Larotonda A.Some Results on Inductive Limits, Preprint, Dept. of Math, F.C.E.Y.N., U.B.A. (1999). To appear in Revista de la Unión Matemática Argentina. Zbl0973.46007MR1763254
  3. [3] Cartan H.Idéaux de Fonctions Analytiques de n variables complexes, Annales de L' Ecole Normale, 3e serie, 61, (1944). Zbl0035.17103MR14472
  4. [4] Cartan H. Ideaux et Modules deFonctions Analytiques de Variables Complexes, Bulletin de laSoc. Math. de France, t 78, (1950). Zbl0038.23703MR36848
  5. [5] Dubuc E.J., Logical Opens and Real Numbers in Topoi, Journal of Pure and Applied Algebra, North Holland, 43 (1986). Zbl0608.18004MR866615
  6. [6] Dubuc E.J., Penon J., Objects Compacts Dans les Topos, J. Austral. Math Soc. (Series A) 40 (1986). Zbl0614.18004MR817839
  7. [7] Dubuc E.J., Taubin G., Analytic Rings, Cahiers de Topologie et Geometrie Differentielle Categoriques, Vol XXIV-3 (1983). Zbl0575.32004MR728632
  8. [8] Dubuc E.J., Zilber J.C., On Analytic Models of Synthetic Differential Geometry, Cahiers de Topologie et Geometrie Differential Categoriques, Vol XXXV-1 (1994) . Zbl0790.32009
  9. [9] Dubuc E.J., Zilber J.C., Banach Spaces in an Analytic Model of Synthetic Differential Geometry, Cahiers de Topologie et Geometrie Differentielle Categoriques, Vol XXXIX-2 (1998). Zbl0923.32024
  10. [10] Kaup L., Kaup B., Holomorphic Functions of Several Variables, Walter de Gruyter, Berlin, New York (1983). Zbl0528.32001MR716497
  11. [11] Mujica J., Holomorphic Functions and Domains ofHolomorphy in Finite and Infinte Dimensions, North Holland Mathematics Studies120 (1986). Zbl0586.46040MR842435
  12. [12] Penon J., De L'infinitésimal au local, Diagrammes, Paris VII (1985). Zbl0558.18003MR798526

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.