On the P R O P corresponding to bialgebras

Teimuraz Pirashvili

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2002)

  • Volume: 43, Issue: 3, page 221-239
  • ISSN: 1245-530X

How to cite

top

Pirashvili, Teimuraz. "On the $PROP$ corresponding to bialgebras." Cahiers de Topologie et Géométrie Différentielle Catégoriques 43.3 (2002): 221-239. <http://eudml.org/doc/91660>.

@article{Pirashvili2002,
author = {Pirashvili, Teimuraz},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {operad; PROP; algebra; bialgebra},
language = {eng},
number = {3},
pages = {221-239},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {On the $PROP$ corresponding to bialgebras},
url = {http://eudml.org/doc/91660},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Pirashvili, Teimuraz
TI - On the $PROP$ corresponding to bialgebras
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2002
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 43
IS - 3
SP - 221
EP - 239
LA - eng
KW - operad; PROP; algebra; bialgebra
UR - http://eudml.org/doc/91660
ER -

References

top
  1. [1] H.-J. Baues, W. Dreckmann, V. Franjou and T. Pirashvili.Foncteurs Polynômiaux et foncteurs de Mackey non linéaires. Bielefeld Preprint 00-031 (available at http://www.mathematik.unibielefeld.de/sfb343). To appear in Bull. Soc. Math. France. Zbl0995.18004MR1871297
  2. [2] F. Borceux.Handbook of categorical algebra. 2. Categories and structures. Encyclopedia of Mathematics and its Applications, 51. Cambridge University Press, Cambridge, 1994. xviii+443 pp. Zbl0843.18001MR1313497
  3. [3] M.D. Crossley and S. Whitehouse.Higher conjugation cohomology in commutative Hopf algebras. Preprint 1999. Zbl0980.16032MR1878725
  4. [4] Ch.EHRESMANN. Catégories structurées, Ann. Ec. Norm. Sup.80 (1963), 349-426. Zbl0128.02002MR197529
  5. [5] A. Dress.Contributions to the theory of induced representations. SpringerLecture Notes in Math. 342 (1973), 182-240. Zbl0331.18016MR384917
  6. [6] B.L. Feigin and B.L. Tsygan.Additive K-theory. SpringerLecture Notes in Math., 1289 (1987) 67-209. Zbl0635.18008MR923136
  7. [7] Z. Fiedorowicz and J.-L. Loday.Crossed simplicial groups and their associated homology. Trans. Amer. Math. Soc.326 (1991), 57-87. Zbl0755.18005MR998125
  8. [8] A. Joyal and R. Street.Braided tensor categories. Adv. Math.102 (1993), 20-78. Zbl0817.18007MR1250465
  9. [9] H. Linder.A remark on Mackey-functors. Manuscripta Math. 18 (1976), 273-278. Zbl0321.18002MR401864
  10. [10] J.-L. Loday.Cyclic Homology, Grund.Math.Wiss. vol. 301, 2nd edition. Springer, 1998. Zbl0885.18007MR1600246
  11. [11] J-L. Loday.Série de Hausdorff, idempotents eulériens et algèbres de Hopf. Exposition. Math.12 (1994), 165-178. Zbl0807.17003MR1274784
  12. [12] J.-L. Loday.La renaissance des opérades. Séminaire Bourbaki, Exp. No. 792, Astérisque237 (1996), 47-74. Zbl0866.18007MR1423619
  13. [13] S. Mac Lane.Categorical algebra. Bull. Amer. Math. Soc.71 (1965). 40-106. Zbl0161.01601MR171826
  14. [14] M. Markl.Cotangent cohomology of a category and deformations. J. Pure Appl. Algebra113 (1996), 195-218. Zbl0865.18011MR1415558
  15. [15] J.P. May and R.W. Thomason.The uniquenes of infinite loop space mashines. Topology.7 (1978), 205-224. Zbl0391.55007MR508885
  16. [16] D. Quillen.Higher algebraic K-theory I. Springer Lecture Notes in Math., 341 (1973), 85-147. Zbl0292.18004MR338129
  17. [17] S. Whitehouse.Symmetric group actions on tensor products of Hopf algebroids. Preprint 1999. Zbl0999.16034MR1849491

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.