Quasi-abelian categories and sheaves

Jean-Pierre Schneiders

Mémoires de la Société Mathématique de France (1999)

  • Volume: 76, page III1-VI140
  • ISSN: 0249-633X

How to cite

top

Schneiders, Jean-Pierre. "Quasi-abelian categories and sheaves." Mémoires de la Société Mathématique de France 76 (1999): III1-VI140. <http://eudml.org/doc/94927>.

@article{Schneiders1999,
author = {Schneiders, Jean-Pierre},
journal = {Mémoires de la Société Mathématique de France},
keywords = {non-abelian homological methods in functional analysis; sheaves with quasi-abelian values; filtered modules; topological vector spaces},
language = {eng},
pages = {III1-VI140},
publisher = {Société mathématique de France},
title = {Quasi-abelian categories and sheaves},
url = {http://eudml.org/doc/94927},
volume = {76},
year = {1999},
}

TY - JOUR
AU - Schneiders, Jean-Pierre
TI - Quasi-abelian categories and sheaves
JO - Mémoires de la Société Mathématique de France
PY - 1999
PB - Société mathématique de France
VL - 76
SP - III1
EP - VI140
LA - eng
KW - non-abelian homological methods in functional analysis; sheaves with quasi-abelian values; filtered modules; topological vector spaces
UR - http://eudml.org/doc/94927
ER -

References

top
  1. [1] M. ARTIN and B. MAZUR — Etale Homotopy, Lecture Notes in Mathematics, no. 100, Springer, Berlin, 1969. Zbl0182.26001MR39 #6883
  2. [2] A. A. BEILINSON, J. BERNSTEIN and P. DELIGNE — Faisceaux pervers, Astérisque 100 (1982). Zbl0536.14011MR86g:32015
  3. [3] H. CARTAN and S. EILENBERG — Homological algebra, Princeton Mathematical Series, no. 19, Princeton University Press, Princeton, 1956. Zbl0075.24305MR17,1040e
  4. [4] R. DEHEUVELS — Homologie des ensembles ordonnés et des espaces topologiques, Bull. Soc. Math. France 90 (1962), p. 261-320. Zbl0171.21902MR29 #5874
  5. [5] A. GROTHENDIECK — Sur quelques points d'algèbre homologique, Tôhoku Math. J. 9 (1957), p. 119-221. Zbl0118.26104MR21 #1328
  6. [6] R. HARTSHORNE — Residues and duality, Lecture Notes in Mathematics, no. 20, Springer, Berlin, 1966. Zbl0212.26101MR36 #5145
  7. [7] M. KASHIWARA and P. SCHAPIRA — Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften, no. 292, Springer, Berlin, 1990. Zbl0709.18001MR92a:58132
  8. [8] M. KASHIWARA and W. SCHMID — Quasi-equivariant D-modules, equivariant derived category, and representations of reductive Lie groups, Lie theory and geometry, Progress in Mathematics, no. 123, Birkhäuser, Boston, 1994, p. 457-488. Zbl0854.22014MR96e:22031
  9. [9] O. A. LAUDAL — Sur les limites projectives et inductives, Ann. scient. Éc. Norm. Sup. 3e série 82 (1965), p. 241-296. Zbl0128.24704MR34 #225
  10. [10] G. LAUMON — Sur la catégorie dérivée des D-modules filtrés, Algebraic Geometry (M. Raynaud and T. Shioda, éds.), Lecture Notes in Mathematics, no. 1016, Springer, Berlin, 1983, p. 151-237. Zbl0551.14006MR85d:32022
  11. [11] S. MACLANE — Categories for the working mathematician, Graduate Text in Mathematics, no. 5, Springer, New York, 1971. Zbl0705.18001MR50 #7275
  12. [12] B. MITCHELL — Theory of categories, Pure and Applied Mathematics, no. 17, Academic Press, New York, 1965. Zbl0136.00604MR34 #2647
  13. [13] F. PROSMANS — Algèbre homologique quasi-abélienne, Mémoire de DEA, Université Paris 13, Villetaneuse (France), June 1995. Available on the web at &lt;http://www-math.math.univ-paris13.fr/~prosmans/&gt;. 
  14. [14] D. QUILLEN — Higher algebraic K-theory I, Algebraic K-Theory I : Higher K-Theories (H. Bass, éd.), Lecture Notes in Mathematics, no. 341, Springer, Berlin, 1973, p. 85-147. Zbl0292.18004MR49 #2895
  15. [15] J.-P. SCHNEIDERS — Cosheaves homology, Bull. Soc. Math. Belg. Sér. B 39 (1987), p. 1-31. Zbl0663.55004MR88c:18004
  16. [16] H. SCHUBERT — Categories, Springer, Berlin, 1972. Zbl0253.18002MR50 #2286
  17. [17] J.-L. VERDIER — Catégories dérivées : Quelques résultats (état 0), Séminaire de Géométrie Algébrique du Bois-Marie (SGA41/2). Cohomologie Étale, Lecture Notes in Mathematics, no. 569, Springer, Berlin, 1963, p. 262-312. Zbl0407.18008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.