Categorical structures enriched in a quantaloid : regular presheaves, regular semicategories

Isar Stubbe

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2005)

  • Volume: 46, Issue: 2, page 99-121
  • ISSN: 1245-530X

How to cite

top

Stubbe, Isar. "Categorical structures enriched in a quantaloid : regular presheaves, regular semicategories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 46.2 (2005): 99-121. <http://eudml.org/doc/91695>.

@article{Stubbe2005,
author = {Stubbe, Isar},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {quantaloïde; semicategory; presheaf; equivalence of Morita; -set},
language = {eng},
number = {2},
pages = {99-121},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Categorical structures enriched in a quantaloid : regular presheaves, regular semicategories},
url = {http://eudml.org/doc/91695},
volume = {46},
year = {2005},
}

TY - JOUR
AU - Stubbe, Isar
TI - Categorical structures enriched in a quantaloid : regular presheaves, regular semicategories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2005
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 46
IS - 2
SP - 99
EP - 121
LA - eng
KW - quantaloïde; semicategory; presheaf; equivalence of Morita; -set
UR - http://eudml.org/doc/91695
ER -

References

top
  1. [1] [ F. Borceux, 1994] Handbook of categorical algebra (3 volumes). Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge. MR1315049
  2. [2] [ A. Carboni, S. Kasangian and R.F.C. Walters, 1987] An axiomatics for bicategories of modules, J. Pure Appl. Algebra45, pp. 127-141. Zbl0615.18006MR889588
  3. [3] [ P.J. Freyd, 1964] Abelian categories. An introduction to the theory of functors. Harper's Series in Modem Mathematics. Harper & Row Publishers, New York. Zbl0121.02103MR166240
  4. [4] [ G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove and D.S. Scott, 1980] A compendium of continuous lattices. Springer-Verlag, Berlin. Zbl0452.06001MR614752
  5. [5] [ J. Koslowski, 1997] Monads and interpolads in bicategories, Theory Appl. Categ.3, pp. 182-212. Zbl0889.18003MR1472221
  6. [6] [ M.-A. Moens, U. Berni-Canani and F. Borceux, 2002] On regular presheaves and regular semicategories, Cah. Topol. Géom. Différ. Catég.43, pp. 163-190. Zbl1038.18006MR1928230
  7. [7] [ I. Stubbe, 2004a] Categorical structures enriched in a quantaloid: categories, distributors and functors, arXiv: math. CT/0409473. MR2122823
  8. [8] [ I. Stubbe, 2004b] Categorical structures enriched in a quantaloid: orders and ideals over a base quantaloid, arXiv: math. CT/0409477. MR2167792
  9. [9] [ G. Van den Bossche, 1995] Quantaloids and non-commutative ring representations, Appl. Categ. Structures3, pp. 305-320. Zbl0847.18005MR1364011
  10. [10] [ F. van der Plancke, 1997] Sheaves on a Quantaloid as Enriched Categories Without Units, PhD thesis, Université de Louvain, Louvain-la-Neuve. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.