Smash product of E ( 1 ) -local spectra at an odd prime

Nora Ganter

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2007)

  • Volume: 48, Issue: 1, page 3-54
  • ISSN: 1245-530X

How to cite

top

Ganter, Nora. "Smash product of $E(1)$-local spectra at an odd prime." Cahiers de Topologie et Géométrie Différentielle Catégoriques 48.1 (2007): 3-54. <http://eudml.org/doc/91712>.

@article{Ganter2007,
author = {Ganter, Nora},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {stable monoidal model category; -local spectra},
language = {eng},
number = {1},
pages = {3-54},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Smash product of $E(1)$-local spectra at an odd prime},
url = {http://eudml.org/doc/91712},
volume = {48},
year = {2007},
}

TY - JOUR
AU - Ganter, Nora
TI - Smash product of $E(1)$-local spectra at an odd prime
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2007
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 48
IS - 1
SP - 3
EP - 54
LA - eng
KW - stable monoidal model category; -local spectra
UR - http://eudml.org/doc/91712
ER -

References

top
  1. [Bou85] A. K. Bousfield. On the homotopy theory of K-local spectra at an odd prime. Amer. J. Math., 107(4):895-932, 1985. Zbl0585.55004MR796907
  2. [CH02] J. Daniel Christensen and Mark Hovey. Quillen model structures for relative homological algebra. Math. Proc. Cambridge Philos. Soc., 133(2):261-293, 2002. Zbl1016.18008MR1912401
  3. [DHKS04] William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith. Homotopy limit functors on model categories and homotopical categories, volume 113 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2004. Zbl1072.18012MR2102294
  4. [EKMM97] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules, and algebras in stable homotopy theory, volume 47 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole. Zbl0894.55001MR1417719
  5. [Fra96] J. Franke. Uniqueness theorems for certain triangulated categories possessing an adams spectral sequence. K Theory Archives 139, 1996. 
  6. [Fra01] Jens Franke. On the Brown representability theorem for triangulated categories. Topology, 40(4):667-680, 2001. Zbl1006.18012MR1851557
  7. [GM96] Sergei I. Gelfand and Yuri I. Manin. Methods of homological algebra. Springer-Verlag, Berlin, 1996. Translated from the 1988 Russian original. Zbl0855.18001MR1438306
  8. [Hov99] Mark Hovey. Model categories, volume 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999. Zbl0909.55001MR1650134
  9. [Hov01] Mark Hovey. Model category structures on chain complexes of sheaves. Trans. Amer. Math. Soc., 353(6):2441-2457 (electronic), 2001. Zbl0969.18010MR1814077
  10. [Hov04] Mark Hovey. Homotopy theory of comodules over a Hopf algebroid. In Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, volume 346 of Contemp. Math., pages 261-304. Amer. Math. Soc., Providence, RI, 2004. Zbl1067.18012MR2066503
  11. [HS98] Michael J. Hopkins and Jeffrey H. Smith. Nilpotence and stable homotopy theory. II. Ann. of Math. (2), 148(1):1-49, 1998. Zbl0927.55015MR1652975
  12. [HSS00] Mark Hovey, Brooke Shipley, and Jeff Smith. Symmetric spectra. J. Amer. Math. Soc., 13(1):149-208, 2000. Zbl0931.55006MR1695653
  13. [Kra05] Henning Krause. Cohomological quotients and smashing localizations. Amer. J. Math., 127(6):1191-1246, 2005. Zbl1090.18007MR2183523
  14. [ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998. Zbl0906.18001MR1712872
  15. [Rav92] Douglas C. Ravenel. Nilpotence and periodicity in stable homotopy theory, volume 128 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1992. Appendix C by Jeff Smith. Zbl0774.55001MR1192553
  16. [Ree74] C. Reedy. Homotopy theory of model categories. Preprint, www-math.mit.edu/~psh/ # Reedy, 1974. 
  17. [Sch01a] Stefan Schwede. S-modules and symmetric spectra. Math. Ann., 319(3):517-532, 2001. Zbl0972.55005MR1819881
  18. [Sch01b] Stefan Schwede. The stable homotopy category has a unique model at the prime 2. Adv. Math., 164(1):24-40, 2001. Zbl0992.55019MR1870511
  19. [SS00] Stefan Schwede and Brooke E. Shipley. Algebras and modules in monoidal model categories. Proc. London Math. Soc. (3), 80(2):491-511, 2000. Zbl1026.18004MR1734325
  20. [SS03] Stefan Schwede and Brooke Shipley. Stable model categories are categories of modules. Topology, 42(1):103-153, 2003. Zbl1013.55005MR1928647
  21. [W0198] Jerome J. Wolbert. Classifying modules over K-theory spectra. J. Pure Appl. Algebra, 124(1-3):289-323, 1998. Zbl0911.55005MR1600317

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.