Smash product of -local spectra at an odd prime
Cahiers de Topologie et Géométrie Différentielle Catégoriques (2007)
- Volume: 48, Issue: 1, page 3-54
- ISSN: 1245-530X
Access Full Article
topHow to cite
topGanter, Nora. "Smash product of $E(1)$-local spectra at an odd prime." Cahiers de Topologie et Géométrie Différentielle Catégoriques 48.1 (2007): 3-54. <http://eudml.org/doc/91712>.
@article{Ganter2007,
author = {Ganter, Nora},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {stable monoidal model category; -local spectra},
language = {eng},
number = {1},
pages = {3-54},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Smash product of $E(1)$-local spectra at an odd prime},
url = {http://eudml.org/doc/91712},
volume = {48},
year = {2007},
}
TY - JOUR
AU - Ganter, Nora
TI - Smash product of $E(1)$-local spectra at an odd prime
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2007
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 48
IS - 1
SP - 3
EP - 54
LA - eng
KW - stable monoidal model category; -local spectra
UR - http://eudml.org/doc/91712
ER -
References
top- [Bou85] A. K. Bousfield. On the homotopy theory of K-local spectra at an odd prime. Amer. J. Math., 107(4):895-932, 1985. Zbl0585.55004MR796907
- [CH02] J. Daniel Christensen and Mark Hovey. Quillen model structures for relative homological algebra. Math. Proc. Cambridge Philos. Soc., 133(2):261-293, 2002. Zbl1016.18008MR1912401
- [DHKS04] William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith. Homotopy limit functors on model categories and homotopical categories, volume 113 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2004. Zbl1072.18012MR2102294
- [EKMM97] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules, and algebras in stable homotopy theory, volume 47 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole. Zbl0894.55001MR1417719
- [Fra96] J. Franke. Uniqueness theorems for certain triangulated categories possessing an adams spectral sequence. K Theory Archives 139, 1996.
- [Fra01] Jens Franke. On the Brown representability theorem for triangulated categories. Topology, 40(4):667-680, 2001. Zbl1006.18012MR1851557
- [GM96] Sergei I. Gelfand and Yuri I. Manin. Methods of homological algebra. Springer-Verlag, Berlin, 1996. Translated from the 1988 Russian original. Zbl0855.18001MR1438306
- [Hov99] Mark Hovey. Model categories, volume 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999. Zbl0909.55001MR1650134
- [Hov01] Mark Hovey. Model category structures on chain complexes of sheaves. Trans. Amer. Math. Soc., 353(6):2441-2457 (electronic), 2001. Zbl0969.18010MR1814077
- [Hov04] Mark Hovey. Homotopy theory of comodules over a Hopf algebroid. In Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, volume 346 of Contemp. Math., pages 261-304. Amer. Math. Soc., Providence, RI, 2004. Zbl1067.18012MR2066503
- [HS98] Michael J. Hopkins and Jeffrey H. Smith. Nilpotence and stable homotopy theory. II. Ann. of Math. (2), 148(1):1-49, 1998. Zbl0927.55015MR1652975
- [HSS00] Mark Hovey, Brooke Shipley, and Jeff Smith. Symmetric spectra. J. Amer. Math. Soc., 13(1):149-208, 2000. Zbl0931.55006MR1695653
- [Kra05] Henning Krause. Cohomological quotients and smashing localizations. Amer. J. Math., 127(6):1191-1246, 2005. Zbl1090.18007MR2183523
- [ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998. Zbl0906.18001MR1712872
- [Rav92] Douglas C. Ravenel. Nilpotence and periodicity in stable homotopy theory, volume 128 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1992. Appendix C by Jeff Smith. Zbl0774.55001MR1192553
- [Ree74] C. Reedy. Homotopy theory of model categories. Preprint, www-math.mit.edu/~psh/ # Reedy, 1974.
- [Sch01a] Stefan Schwede. S-modules and symmetric spectra. Math. Ann., 319(3):517-532, 2001. Zbl0972.55005MR1819881
- [Sch01b] Stefan Schwede. The stable homotopy category has a unique model at the prime 2. Adv. Math., 164(1):24-40, 2001. Zbl0992.55019MR1870511
- [SS00] Stefan Schwede and Brooke E. Shipley. Algebras and modules in monoidal model categories. Proc. London Math. Soc. (3), 80(2):491-511, 2000. Zbl1026.18004MR1734325
- [SS03] Stefan Schwede and Brooke Shipley. Stable model categories are categories of modules. Topology, 42(1):103-153, 2003. Zbl1013.55005MR1928647
- [W0198] Jerome J. Wolbert. Classifying modules over K-theory spectra. J. Pure Appl. Algebra, 124(1-3):289-323, 1998. Zbl0911.55005MR1600317
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.