About p -adic interpolation of continuous and differentiable functions

Stefaan Caenepeel

Groupe de travail d'analyse ultramétrique (1981-1982)

  • Volume: 9, Issue: 2, page 1-8

How to cite

top

Caenepeel, Stefaan. "About $p$-adic interpolation of continuous and differentiable functions." Groupe de travail d'analyse ultramétrique 9.2 (1981-1982): 1-8. <http://eudml.org/doc/91879>.

@article{Caenepeel1981-1982,
author = {Caenepeel, Stefaan},
journal = {Groupe de travail d'analyse ultramétrique},
keywords = {p-adic interpolation; p-adic differentiability; normal bases for space of continuous functions},
language = {eng},
number = {2},
pages = {1-8},
publisher = {Secrétariat mathématique},
title = {About $p$-adic interpolation of continuous and differentiable functions},
url = {http://eudml.org/doc/91879},
volume = {9},
year = {1981-1982},
}

TY - JOUR
AU - Caenepeel, Stefaan
TI - About $p$-adic interpolation of continuous and differentiable functions
JO - Groupe de travail d'analyse ultramétrique
PY - 1981-1982
PB - Secrétariat mathématique
VL - 9
IS - 2
SP - 1
EP - 8
LA - eng
KW - p-adic interpolation; p-adic differentiability; normal bases for space of continuous functions
UR - http://eudml.org/doc/91879
ER -

References

top
  1. [1] Amice ( Y.). - Interpolation p-adique, Bull. Soc. math. France, t. 92, 1964, p. 119-180. Zbl0158.30201MR188199
  2. [2] Amice ( Y. ) . - Les nombres p-adiques. - Paris, Presses universitaires de France, 1975 (Collection SUP, "Le Mathématicien", 14). Zbl0313.12104MR447195
  3. [3] Barsky ( D.). - Fonctions k-lipschitziennes sur un anneau local et polynômes à valeurs entières, Bull. Soc. math. France, t. 101, 1973, p. 397-411. Zbl0291.12107MR371863
  4. [4] Bojanic ( R.). - A simple proof of Mahler's theorem on approximation of continuous functions of a p-adic variable by polynomials, J. of Number Theory, t. 6, 1974, p. 412-415. Zbl0298.12006MR357344
  5. [5] Mahler ( K.). - An interpolation series for continuous functions of a p-adic variable, J. für reine und angew. Math., t. 199, 1958, p. 23-34. Zbl0080.03504MR95821
  6. [6] Schikhof ( W.H. ) . - Non-archimedean calculus. - NijmegenKatholiche Universitet, Mathematisch Institut, 1978 (Lecture Notes Report, 7812). Zbl0463.26007MR522166
  7. [7] Serre ( J.-P.) . - Endomorphismes complètement continus des espaces de Banach p-adiques. - Paris, Presses universitaires de France, 1962 (Institut des hautes Etudes scientifiques. Publications mathématiques, 12, p. 69-85). Zbl0104.33601MR144186
  8. [8] Van Rooij ( A.C.M.). - Non archimedean functional analysis. - New York and Basel, M. Dekker, 1978 (Pure and applied Mathematics, Dekker, 51). Zbl0396.46061MR512894
  9. [9] Weisman ( C.). - On p-adic differentiability, J. of Number Theory, t. 9, 1977, p. 79-86. Zbl0349.12013MR429846

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.