A method for constructing orthonormal bases for non-archimedean Banach spaces of continuous functions

Ann Verdoodt

Annales mathématiques Blaise Pascal (2000)

  • Volume: 7, Issue: 1, page 87-99
  • ISSN: 1259-1734

How to cite

top

Verdoodt, Ann. "A method for constructing orthonormal bases for non-archimedean Banach spaces of continuous functions." Annales mathématiques Blaise Pascal 7.1 (2000): 87-99. <http://eudml.org/doc/79219>.

@article{Verdoodt2000,
author = {Verdoodt, Ann},
journal = {Annales mathématiques Blaise Pascal},
keywords = {local field; orthonormal base; well distributed sequence},
language = {eng},
number = {1},
pages = {87-99},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {A method for constructing orthonormal bases for non-archimedean Banach spaces of continuous functions},
url = {http://eudml.org/doc/79219},
volume = {7},
year = {2000},
}

TY - JOUR
AU - Verdoodt, Ann
TI - A method for constructing orthonormal bases for non-archimedean Banach spaces of continuous functions
JO - Annales mathématiques Blaise Pascal
PY - 2000
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 7
IS - 1
SP - 87
EP - 99
LA - eng
KW - local field; orthonormal base; well distributed sequence
UR - http://eudml.org/doc/79219
ER -

References

top
  1. [1] Y. Amice, "Interpolation p-adique", Bull. Soc. math. France, 92, 1964, p. 117-180. Zbl0158.30201MR188199
  2. [2] S. Caenepeel, "About p-adic Interpolation of Continuous and Differentiable Functions". Groupe d' étude d'analyse ultramétrique (Y. Amice, G. Christol, P. Robba), 9e année, 1981/82, no. 25, 8 p. Zbl0515.12014MR720568
  3. [3] S. Caenepeel, "p-adic Interpolation of Continuous and Analytic functions", Seminar on p-adic Analysis, 1981-82, Vrije UniversiteitBrussel. 
  4. [4] L. Gruson and M. van der Put, "Banach Spaces", Table Ronde d' Analyse non Archimédienne (1972 Paris), Bulletin de la Société Mathématique de France, Mémoire39-40, 1974, p. 55 - 100. Zbl0312.46029MR365173
  5. [5] K. Mahler, "An Interpolation Series for Continuous Functions of a p-adic Variable", Journal für reine und angewandte Mathematik, vol. 199, 1958, p. 23-34. Zbl0080.03504MR95821
  6. [6] J.P. Serre, Endomorphismes Complètement Continus des Espaces Banach p-adiques, Presses Universitaires de France, Paris, 1962, Institut Hautes Etudes Scientifiques, Publications Mathématiques, 12, p. 69-85. Zbl0104.33601MR144186
  7. [7] A. Verdoodt, "Normal Bases for Non-Archimedean Spaces of Continuous Functions", Publicacions Matemàtiques, Vol. 37, 1993, p. 403-427. Zbl0804.46088MR1249241
  8. [8] A. Verdoodt, "Orthonormal Bases for Spaces of Continuous and Continuously Differentiable Functions defined on a Subset of ZZp, Revista Matemática de la Universidad Complutense de Madrid, Vol. 9, no. 2, 1996, p.295-307. Zbl0882.46033MR1430780
  9. [9] A. Verdoodt, "Orthonormal Bases for Non-Archimedean Banach Spaces of Continuous Functions", in "p-Adic Functional Analysis", editorsKakol J.[OK]De Grande-De Kimpe N.Pérez-Garcia C. , 1999, p. 323-331, chapter 21. Zbl0940.46050MR1703503

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.