A new class of balanced search trees : half-balanced binary search tress

H. J. Olivié

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1982)

  • Volume: 16, Issue: 1, page 51-71
  • ISSN: 0988-3754

How to cite

top

Olivié, H. J.. "A new class of balanced search trees : half-balanced binary search tress." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 16.1 (1982): 51-71. <http://eudml.org/doc/92153>.

@article{Olivié1982,
author = {Olivié, H. J.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {balanced binary search trees; deletion; insertion},
language = {eng},
number = {1},
pages = {51-71},
publisher = {EDP-Sciences},
title = {A new class of balanced search trees : half-balanced binary search tress},
url = {http://eudml.org/doc/92153},
volume = {16},
year = {1982},
}

TY - JOUR
AU - Olivié, H. J.
TI - A new class of balanced search trees : half-balanced binary search tress
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1982
PB - EDP-Sciences
VL - 16
IS - 1
SP - 51
EP - 71
LA - eng
KW - balanced binary search trees; deletion; insertion
UR - http://eudml.org/doc/92153
ER -

References

top
  1. 1. G. M. ADELSON-VELSKII and E. M. LANDIS, An Algorithm for the Organization of Information, Dokl. Akad. Nauk S.S.S.R., Vol. 146, 1962, pp. 263-266 (Russian). English translation in Soviet Math. Dokl., Vol. 3, 1962, pp. 1259-1263. MR156719
  2. 2. A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974. Zbl0326.68005MR413592
  3. 3. R. BAYER, Symmetric Binary B-trees Data Structure and Maintenance Algorithms, Acta Informatica, Vol. 1, 1972, pp. 290-306. Zbl0233.68009MR323192
  4. 4. N. BLUM and K. MEHLHORM, Mittlere Anzahl von Rebalancierungoperationen in Gewichtsbalancierten Bäumen, 4th GI Conference on Theoretical Computer Science, Aachen 1979, Lecture Notes in Computer Science, Vol. 67, pp. 67-78, Springer, Berlin, Heidelberg, New York. Zbl0399.05022MR568093
  5. 5. P. L. KARLTON, S. H. FULLER, R. E. SCROGGS and E. B. KAEHLER, Performance of Height-Balanced Trees, Com. A.C.M. 19, Vol. 1, 1976, pp. 23-28. Zbl0317.68044
  6. 6. D. E. KNUTH, The Art of Computer Programming, Vol. 1, Fundamental Algorithms, Addison-Wesley, Reading, Mass., 1968, 1973. Zbl0191.17903MR378456
  7. 7. D. E. KNUTH, The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley, Reading, Mass., 1973. Zbl0302.68010MR445948
  8. 8. J. NIEVERGELT and E. M. Reingold, Binary Search Trees of Bounded Balance, S.I.A.M. J. Comput., Vol. 2, 1973, pp. 33-43. Zbl0262.68012MR331903
  9. 9. H. J. OLIVIÉ, A New Class of Balanced Search Trees: Half-Balanced Binary Searc Trees, Technical Report 80-02, IHAM, Paardenmarkt 94, B-2000 Antwerp, Belgium, 1980. Zbl0489.68056
  10. 10. H. J. OLIVIÉ, A Study of Balanced Binary Trees and Balanced One-Two Trees, Ph. D. Thesis, Dept. of Mathematics, U.I.A., University of Antwerp, Belgium, 1980. Zbl0422.68029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.