Probabilistic analysis of two euclidean location problems

A. Marchetti-Spaccamela; M. Talamo

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1983)

  • Volume: 17, Issue: 4, page 387-395
  • ISSN: 0988-3754

How to cite

top

Marchetti-Spaccamela, A., and Talamo, M.. "Probabilistic analysis of two euclidean location problems." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 17.4 (1983): 387-395. <http://eudml.org/doc/92195>.

@article{Marchetti1983,
author = {Marchetti-Spaccamela, A., Talamo, M.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {location problems in the plane; polynomial time algorithms},
language = {eng},
number = {4},
pages = {387-395},
publisher = {EDP-Sciences},
title = {Probabilistic analysis of two euclidean location problems},
url = {http://eudml.org/doc/92195},
volume = {17},
year = {1983},
}

TY - JOUR
AU - Marchetti-Spaccamela, A.
AU - Talamo, M.
TI - Probabilistic analysis of two euclidean location problems
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1983
PB - EDP-Sciences
VL - 17
IS - 4
SP - 387
EP - 395
LA - eng
KW - location problems in the plane; polynomial time algorithms
UR - http://eudml.org/doc/92195
ER -

References

top
  1. 1. V. L. CHUNG, Course in Probability Theory, Academie Press, 1974. Zbl0345.60003
  2. 2. S. EVEN, Graph Algorithms, Computer Science Press, 1979. Zbl0441.68072MR540205
  3. 3. A. M. FRIEZE, Probabilistic Analysis of Some Euclidean Clustering Problems, Disc. Appl. Mathem., 2, 1980. Zbl0449.90073MR600180
  4. 4. M. S. GAREY and D. S. JOHNSON, Computers and Intractability, W. H. Freeman and Company, 1979. Zbl0411.68039MR519066
  5. 5. A. MARCHETTI-SPACCAMELA, The P-Center Problem in the Plane is NP-Complete, Proc. 19-th Allerton Conference on Communication, Control and Computing, 1981. 
  6. 6. C. H. PAPADIMITRIOU, Worst-Case and Probabilistic Analysis of a Geometric Location Problem, S.I.A.M. J. on Computing, Vol. 10, No. 3, 1981. Zbl0461.68078MR623065
  7. 7. M. J. SHAMOS, Computational Geometry, Doct. Th., Yale Univ., New-Haven, 1978. 
  8. 8. K. SUPOWIT, Topics in Computational Geometry, Doct. Th., Univ. of Illinois at Urbana Champaign, 1981. 
  9. 9. C. TOREGAS, L. BERGMAN, R. REVELLE and R. SWAIN, The location of Emergency Service Facilities, Oper. Res., Vol. 19, No. 6, 1971. Zbl0224.90048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.