On the complexity of computable real sequences
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1987)
- Volume: 21, Issue: 2, page 175-180
- ISSN: 0988-3754
Access Full Article
topHow to cite
topReferences
top- 1. O. ABERTH, Computable Analysis, McGraw-Hill, New York, 1980. Zbl0461.03015
- 2. K. Ko and H. FRIEDMAN, Computational Complexity of Real Functions, Theoretical Computer Science, Vol. 20, 1982, pp. 323-352. Zbl0498.03047MR666209
- 3. K. KO, On the Definitions of Some Complexity Classes of Real Numbers, Math. Systems Theory, Vol. 16, 1983, pp. 95-109. Zbl0529.03016MR696140
- 4. A. MOSTOWSKI, On Computable Real Sequences, Fund. Math., Vol. 44, 1957, pp. 37-51. Zbl0079.24702MR91242
- 5. H. G. RICE, Recursive Real Numbers, Proc Amer. Math. Soc., Vol. 5, 1954, pp. 784-791. Zbl0058.00602MR63328
- 6. R. M. ROBINSON, Review of R. Peter's Book, Rekursive Funktionen, J. Symbolic Logic, Vol. 16, 1951, pp. 280-282.
- 7. E. SPECKER, Nicht-Konstruktiv beweisbare Sätze des Analysis, J. Symbolic Logic, Vol. 14, 1949, pp. 145-158. Zbl0033.34102MR31447
- 8. J. TORÁN, Computabilidad y complejidad computacional de algunos problemas del analisis real elemental, Tesina de la Universidad Complutense de Madrid. 1985.
- 9. A. M. TURING, On Computable Real Numbers with an Application to the Entscheidungs Problem, Proc. London Math. Soc., 1937, pp. 230-265. Zbl0016.09701JFM62.1059.03