An almost naive algorithm for finding relative neighbourhood graphs in metrics
Jyrki Katajainen; Olli Nevalainen
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1987)
- Volume: 21, Issue: 2, page 199-215
- ISSN: 0988-3754
Access Full Article
topHow to cite
topKatajainen, Jyrki, and Nevalainen, Olli. "An almost naive algorithm for finding relative neighbourhood graphs in $L_p$ metrics." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 21.2 (1987): 199-215. <http://eudml.org/doc/92284>.
@article{Katajainen1987,
author = {Katajainen, Jyrki, Nevalainen, Olli},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {relative neighbourhood graph; metric; algorithm},
language = {eng},
number = {2},
pages = {199-215},
publisher = {EDP-Sciences},
title = {An almost naive algorithm for finding relative neighbourhood graphs in $L_p$ metrics},
url = {http://eudml.org/doc/92284},
volume = {21},
year = {1987},
}
TY - JOUR
AU - Katajainen, Jyrki
AU - Nevalainen, Olli
TI - An almost naive algorithm for finding relative neighbourhood graphs in $L_p$ metrics
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1987
PB - EDP-Sciences
VL - 21
IS - 2
SP - 199
EP - 215
LA - eng
KW - relative neighbourhood graph; metric; algorithm
UR - http://eudml.org/doc/92284
ER -
References
top- 1. J. L. BENTLEY and H. A. MAURER, Efficient Worst-Case Data Structures for Range Searching, Acta Informatica, Vol. 13, 1980, pp. 155-168. Zbl0423.68029MR564462
- 2. D. COPPERSMITH, D. T. LEE and C. K. WONG, An Elementary Proof of Nonexistence of Isometries Between lkp and lkq, I.B.M. Journal of Research and Development, Vol. 23, 1979, pp. 696-699. Zbl0424.68026MR548491
- 3. P. FRANKL, Privite communication, May 23, 1985.
- 4. H. N. GABOW, J. L. BENTLEY and R. E. TARJAN, Scaling and Related Techniques for Geometry Problems, in Proc. 16th Annual A.C.M. Symposium on Theory of Computing, Washington D.C., 1984, pp. 135-143.
- 5. R. K. GUY, and S. ZNÁM, A Problem of Zarankiewicz, in Recent Progress in Combinatorics, W. T. TUTTE Ed., Academic Press, 1969, pp. 237-243. Zbl0196.02203MR256902
- 6. C. HYLTÉN-CAVALLIUS, On a Combinatorical Problem, Colloquium Mathematicum, Vol. 6, 1958, pp. 59-65. Zbl0086.01202MR103158
- 7. J. KATAJAINEN and M. KOPPINEN, A note on Systems of Finite Sets Satisfying an Intersection Condition, Report B36, Department of Computer Science, University of Turku, Finland, 1985.
- 8. J. KATAJAINEN and O. NEVALAINEN, Computing Relative Neighbourhood Graphs in the Plane, Pattern Recognition, Vol. 19, 1986, pp. 221-228. Zbl0602.68089
- 9. J. KATAJAINEN, O. NEVALAINEN and J. TEUHOLA, A Linear Expected-Time Algorithm for Computing Planar Relative Neighbourhood Graphs, in Information Processing Letters (to appear). Zbl0653.68034MR896149
- 10. M. KOPPINEN, Privite communication, December 18, 1985.
- 11. J. O'ROURKE, Computing the Relative Neighborhood Graph in the L1 and L∞ Metrics, Pattern Recognition, Vol. 15, 1982, pp. 189-192. Zbl0486.68063MR662775
- 12. K. J. SUPOWIT, The Relative Neighborhood Graph, with an Application to Minimum Spanning Trees, Journal of the A.C.M., Vol. 30, 1983, pp. 428-448. Zbl0625.68047MR709827
- 13. G. T. TOUSSAINT, The Relative Neighbourhood Graph of a Finite Planar Set, Pattern Recognition, Vol. 12, 1980, pp. 261-268. Zbl0437.05050MR591314
- 14. G. T. TOUSSAINT, Comment on "Algorithms for Computing Relative Neighbourhood Graph", Electronics Letters, Vol. 16, 1980, pp. 860-861. MR592510
- 15. G. T. TOUSSAINT and R. MENARD, Fast Algorithms for Computing the Planar Relative Neighborhood Graph, in Proc. 5th Symposium on Operations Research, Köln, F.R. Germany, 1980, pp. 425-428. Zbl0467.90028
- 16. R. B. URQUHART, Algorithms for Computation of Relative Neighbourhood Graph, Electronics Letters, Vol. 16, 1980, pp. 556-557. MR578786
- 17. D. WOOD, An Isothetic View of Computational Geometry, Report CS-84-01, Computer Science Department, University of Waterloo, Canada, 1984. Zbl0614.68078MR834395
- 18. A. C. YAO, On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems, S.I.A.M. Journal of Computing, Vol. 11, 1982, pp. 721-736. Zbl0492.68050MR677663
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.