Characterizing the polynomial hierarchy by alternating auxiliary pushdown automata
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1989)
- Volume: 23, Issue: 1, page 87-99
- ISSN: 0988-3754
Access Full Article
topHow to cite
topReferences
top- 1. A. BORODIN, S. A. COOK, P. W. DYMOND, W. L. RUZZO, and M. TOMPA, Two Applications of Complementation via Inductive Counting, manuscript, Sept. 1987.
- 2. S. A. COOK, Characterizations of Pushdown Machines in Terms of Timebounded Computers, Journ. of the ACM 18,Vol. 1, 1971, pp. 4-18. Zbl0222.02035MR292605
- 3. A. K. CHANDRA, D. C. KOZEN, and L. J. STOCKMEYER, Alternation, Journ. of the ACM 28, Vol. 1, 1981, pp. 114-133. Zbl0473.68043MR603186
- 4. S. GREIBACH, Checking Automata and One-way Stack Languages, Journ. of Computer and System Sciences, Vol. 3, 1969, pp. 196-217. Zbl0174.02702MR243953
- 5. J. E. HOPCROFT, and J. D. ULLMAN, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, Mass., 1979. Zbl0426.68001MR645539
- 6. N. IMMERMAN, Nondeterministic Space is Closed Under Complement, Techn. Report, Yale University, YALEU/DCS/TR 552, July 1987. Zbl0668.68056MR961049
- 7. B. JENNER, B. KIRSIG, and K.-J. LANGE, The Logarithmic Alternation Hierarchy Collapses: A∑L2 = A∏L2 (extended version), to be published in Information and Computation. Zbl0629.68051
- 8. K.-J. LANGE, B. JENNER, and B. KIRSIG, The Logarithmic Alternation Hierarchy Collapses: A∑L2 = A∏L2, Proc. of the 14th ICALP, Karlsruhe, July 1987, Lect. Notes in Comp. Sci., Vol. 267, pp.531-541. Zbl0629.68051MR912734
- 9. R. E. LADNER, R. J. LIPTON, and L. J . STOCKMEYER, Alternating Pushdown Automata, Proc. of the 19th IEEE Symp. on Foundations of Comp. Sci., Ann Arbor, Mich., 1978, pp. 92-106. Zbl0538.68039
- 10. R. E. LADNER, L. J. STOCKMEYER, and R. J. LIPTON, Alternation Bounded Auxiliary Push-down Automata, Information and Control, Vol. 62, 1984, pp. 93-108. Zbl0589.68058MR789889
- 11. U. SCHÖNING, and K. W. WAGNER, Collapsing Oracle Hierarchies, Census Functions and Logarithmically Many Queries, Report No. 140,Universität Augsburg, May 1987. Zbl0648.68065MR935790
- 12. L. J. STOCKMEYER, The Polynomial-time Hierarchy, Theoret. Comp. Sci.,Vol. 3, 1976, pp. 1-22. Zbl0353.02024MR438810
- 13. I. H. SUDBOROUGH, On the Tape Complexity of Deterministic Context-Free Languages, Journ. of the ACM 25, Vol. 3, 1978, pp. 405-414. Zbl0379.68054MR498563
- 14. R. SZELEPCSÉNYI, The Method of Forcing for Nondeterministic Automata, Bull. European Assoc. Theoret. Comp. Sci. No. 33, Oct. 1987 pp. 96-100. Zbl0664.68082