Nonuniform complexity classes specified by lower and upper bounds

José L. Balcázar; Joaquim Gabarró

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1989)

  • Volume: 23, Issue: 2, page 177-194
  • ISSN: 0988-3754

How to cite

top

Balcázar, José L., and Gabarró, Joaquim. "Nonuniform complexity classes specified by lower and upper bounds." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 23.2 (1989): 177-194. <http://eudml.org/doc/92330>.

@article{Balcázar1989,
author = {Balcázar, José L., Gabarró, Joaquim},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {classes defined by exponential lower bounds; nonuniform complexity measures; classes defined by polynomial and polylog upper bounds; oracle Turing machines},
language = {eng},
number = {2},
pages = {177-194},
publisher = {EDP-Sciences},
title = {Nonuniform complexity classes specified by lower and upper bounds},
url = {http://eudml.org/doc/92330},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Balcázar, José L.
AU - Gabarró, Joaquim
TI - Nonuniform complexity classes specified by lower and upper bounds
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1989
PB - EDP-Sciences
VL - 23
IS - 2
SP - 177
EP - 194
LA - eng
KW - classes defined by exponential lower bounds; nonuniform complexity measures; classes defined by polynomial and polylog upper bounds; oracle Turing machines
UR - http://eudml.org/doc/92330
ER -

References

top
  1. 1. J. L. BALCÁZAR, J. DÍAZ and J. GABARRÓUniform Characterizations of Nonuniform Complexity Measures, Information and Control, Vol. 67, Nos. 1-3, 1985, pp. 53-69. Zbl0588.68021MR833860
  2. 2. J. L. BALCÁZAR and J. GABARRÓ, Some Comments About Notations of Orders of Magnitude, Buil. EATCS, Vol. 30, 1986, pp. 34-42. Zbl1023.68587
  3. 3. D. BARRINGTON, Bounded-width Polynomial-size Branching Programs Recognize Exactly Those Languages in NCl, In: l8th ACM Symp. Th. of Comp., 1986, pp. 1-5. 
  4. 4. A. BORODIN, On Relating Time and Space to Size and Depth, SIAM J. Comp., Vol. 6. No. 4, 1977, pp. 733-744. Zbl0366.68039MR461984
  5. 5. F. BRANDENBURG, On One-way Auxiliary Pushdown Automata, In: 3rd GI Conf. on Theor. Comp. Sci., 1977, Springer Verlag, Lect. Notes in Comp. Sci., Vol. 48, pp. 132-144. Zbl0359.68055MR483712
  6. 6. W. BUCHER, K. CULIK, H. MAURER and D. WOTSCHKE, Concise Description of Finite Languages, Theor. Comp. Sci., Vol. 14, No. 3, 1981, pp. 227-246. Zbl0469.68081MR619000
  7. 7. R. CASAS and J. GABARRO, About LOG-ON languages, Internal report RR 85/02, Facultat d'Informàtica de Barcelona. 
  8. 8. M. CHYTIL, Almost context-free languages, Manuscript, 1984. 
  9. 9. S. COOK, Characterizations of Pushdown Machines in Terms of Time-Bounded Computers, Journal ACM, Vol. 18, No. 1, 1971, pp. 4-18. Zbl0222.02035MR292605
  10. 10. A. EHRENFEUTCH and G. ROZENBERG, On the Separating Power of EOL Systems, RAIRO Inf. Theor., Vol. 17, No. 1, 1983, pp. 13-22. Zbl0512.68059MR701985
  11. 11. J. GABARRÓFunciones de complejidad y su relación con las familias abstractas de lenguajes. Ph. D. dissertation, 1983. 
  12. See also: Initial Index: a new Complexity Function for Languages, In: 10th Int. Coll. on Aut. Lang. and Prog., 1983, Springer Verlag, Lect. Notes in Comp. Sci., Vol. 154, pp. 226-236. Zbl0523.68068MR727660
  13. 12. G. GOODRICH, R. LADNER and M. FISCHER, Straight-line Programs to Compute Finite Languages, Conf. Theor. Comp. Sci., Waterloo, 1977. Zbl0409.68025MR502232
  14. 13. M. HARRISON, Introduction to Switching and Automata Theory, McGraw Hill, New York, 1965. Zbl0196.51702MR186503
  15. 14. J. HOPCROFT, W. PAUL and L. VALIANT, On Time Versus Space and Related Problems, Journal ACM, Vol. 2, 1977, pp. 332-337. Zbl0358.68082MR443428
  16. 15. J. HOPCROFT and J. ULLMAN, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading (Mass.), 1979. Zbl0426.68001MR645539
  17. 16. R. KARP and R. LIPTON, Some Connections between Nonuniform and Uniform Complexity Classes. In: 12th ACM Symp. Th. of Comp., 1980, pp. 302-309. 
  18. 17. D. KNUTH, Big Omicron and Big Omega and Big Theta, SIGACT News, Apr.-June 1976, pp. 18-24. 
  19. 18. R. LADNER, The Circuit Value Problem is Log Space Completefor P, SIGACT News, January 1975, pp. 18-20. 
  20. 19. W. Ruzzo, J. SIMON and M. TOMPA, Space-bounded Hierarchies and Probabilistic Computations, J. Comp. Syst. Sci., Vol. 28, 1984, pp. 216-230. Zbl0573.68021MR760544
  21. 20. J. SAVAGE, The Complexity of Computing, Wiley Interscience 1976. Zbl0391.68025MR495205
  22. 21. C. SCHNORR, The Network Complexity and the Turing Machine Complexity of Finite Functions, Acta Informática, Vol. 7, 1976, pp. 95-107. Zbl0338.02019MR421889
  23. 22. M. J. SERNA, Asymptotical Behaviour of Some Non-Uniform Measures, Inf. Théor. et Appl., (to appear). Zbl0677.68086
  24. 23. P. VITANYI and L. MEERTENS, Big Omega Versus the Wild Functions, Bull. EATCS, 22 Feb. 1984, pp. 14-19. 
  25. 24. I. WEGENER, On the Complexity of Branching Programs and Decision Trees for Clique Functions, Journal ACM, Vol. 35, 1988, pp. 461-471. Zbl0652.68063MR935261

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.