Nonuniform complexity classes specified by lower and upper bounds
José L. Balcázar; Joaquim Gabarró
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1989)
- Volume: 23, Issue: 2, page 177-194
- ISSN: 0988-3754
Access Full Article
topHow to cite
topBalcázar, José L., and Gabarró, Joaquim. "Nonuniform complexity classes specified by lower and upper bounds." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 23.2 (1989): 177-194. <http://eudml.org/doc/92330>.
@article{Balcázar1989,
author = {Balcázar, José L., Gabarró, Joaquim},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {classes defined by exponential lower bounds; nonuniform complexity measures; classes defined by polynomial and polylog upper bounds; oracle Turing machines},
language = {eng},
number = {2},
pages = {177-194},
publisher = {EDP-Sciences},
title = {Nonuniform complexity classes specified by lower and upper bounds},
url = {http://eudml.org/doc/92330},
volume = {23},
year = {1989},
}
TY - JOUR
AU - Balcázar, José L.
AU - Gabarró, Joaquim
TI - Nonuniform complexity classes specified by lower and upper bounds
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1989
PB - EDP-Sciences
VL - 23
IS - 2
SP - 177
EP - 194
LA - eng
KW - classes defined by exponential lower bounds; nonuniform complexity measures; classes defined by polynomial and polylog upper bounds; oracle Turing machines
UR - http://eudml.org/doc/92330
ER -
References
top- 1. J. L. BALCÁZAR, J. DÍAZ and J. GABARRÓUniform Characterizations of Nonuniform Complexity Measures, Information and Control, Vol. 67, Nos. 1-3, 1985, pp. 53-69. Zbl0588.68021MR833860
- 2. J. L. BALCÁZAR and J. GABARRÓ, Some Comments About Notations of Orders of Magnitude, Buil. EATCS, Vol. 30, 1986, pp. 34-42. Zbl1023.68587
- 3. D. BARRINGTON, Bounded-width Polynomial-size Branching Programs Recognize Exactly Those Languages in NCl, In: l8th ACM Symp. Th. of Comp., 1986, pp. 1-5.
- 4. A. BORODIN, On Relating Time and Space to Size and Depth, SIAM J. Comp., Vol. 6. No. 4, 1977, pp. 733-744. Zbl0366.68039MR461984
- 5. F. BRANDENBURG, On One-way Auxiliary Pushdown Automata, In: 3rd GI Conf. on Theor. Comp. Sci., 1977, Springer Verlag, Lect. Notes in Comp. Sci., Vol. 48, pp. 132-144. Zbl0359.68055MR483712
- 6. W. BUCHER, K. CULIK, H. MAURER and D. WOTSCHKE, Concise Description of Finite Languages, Theor. Comp. Sci., Vol. 14, No. 3, 1981, pp. 227-246. Zbl0469.68081MR619000
- 7. R. CASAS and J. GABARRO, About LOG-ON languages, Internal report RR 85/02, Facultat d'Informàtica de Barcelona.
- 8. M. CHYTIL, Almost context-free languages, Manuscript, 1984.
- 9. S. COOK, Characterizations of Pushdown Machines in Terms of Time-Bounded Computers, Journal ACM, Vol. 18, No. 1, 1971, pp. 4-18. Zbl0222.02035MR292605
- 10. A. EHRENFEUTCH and G. ROZENBERG, On the Separating Power of EOL Systems, RAIRO Inf. Theor., Vol. 17, No. 1, 1983, pp. 13-22. Zbl0512.68059MR701985
- 11. J. GABARRÓFunciones de complejidad y su relación con las familias abstractas de lenguajes. Ph. D. dissertation, 1983.
- See also: Initial Index: a new Complexity Function for Languages, In: 10th Int. Coll. on Aut. Lang. and Prog., 1983, Springer Verlag, Lect. Notes in Comp. Sci., Vol. 154, pp. 226-236. Zbl0523.68068MR727660
- 12. G. GOODRICH, R. LADNER and M. FISCHER, Straight-line Programs to Compute Finite Languages, Conf. Theor. Comp. Sci., Waterloo, 1977. Zbl0409.68025MR502232
- 13. M. HARRISON, Introduction to Switching and Automata Theory, McGraw Hill, New York, 1965. Zbl0196.51702MR186503
- 14. J. HOPCROFT, W. PAUL and L. VALIANT, On Time Versus Space and Related Problems, Journal ACM, Vol. 2, 1977, pp. 332-337. Zbl0358.68082MR443428
- 15. J. HOPCROFT and J. ULLMAN, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading (Mass.), 1979. Zbl0426.68001MR645539
- 16. R. KARP and R. LIPTON, Some Connections between Nonuniform and Uniform Complexity Classes. In: 12th ACM Symp. Th. of Comp., 1980, pp. 302-309.
- 17. D. KNUTH, Big Omicron and Big Omega and Big Theta, SIGACT News, Apr.-June 1976, pp. 18-24.
- 18. R. LADNER, The Circuit Value Problem is Log Space Completefor P, SIGACT News, January 1975, pp. 18-20.
- 19. W. Ruzzo, J. SIMON and M. TOMPA, Space-bounded Hierarchies and Probabilistic Computations, J. Comp. Syst. Sci., Vol. 28, 1984, pp. 216-230. Zbl0573.68021MR760544
- 20. J. SAVAGE, The Complexity of Computing, Wiley Interscience 1976. Zbl0391.68025MR495205
- 21. C. SCHNORR, The Network Complexity and the Turing Machine Complexity of Finite Functions, Acta Informática, Vol. 7, 1976, pp. 95-107. Zbl0338.02019MR421889
- 22. M. J. SERNA, Asymptotical Behaviour of Some Non-Uniform Measures, Inf. Théor. et Appl., (to appear). Zbl0677.68086
- 23. P. VITANYI and L. MEERTENS, Big Omega Versus the Wild Functions, Bull. EATCS, 22 Feb. 1984, pp. 14-19.
- 24. I. WEGENER, On the Complexity of Branching Programs and Decision Trees for Clique Functions, Journal ACM, Vol. 35, 1988, pp. 461-471. Zbl0652.68063MR935261
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.