Speeding up the computations on an elliptic curve using addition-subtraction chains

François Morain; Jorge Olivos

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1990)

  • Volume: 24, Issue: 6, page 531-543
  • ISSN: 0988-3754

How to cite

top

Morain, François, and Olivos, Jorge. "Speeding up the computations on an elliptic curve using addition-subtraction chains." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 24.6 (1990): 531-543. <http://eudml.org/doc/92374>.

@article{Morain1990,
author = {Morain, François, Olivos, Jorge},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {algorithms; addition-subtraction chains; exponentiation; computations on elliptic curves; factorization; primality testing; Atkin's test},
language = {eng},
number = {6},
pages = {531-543},
publisher = {EDP-Sciences},
title = {Speeding up the computations on an elliptic curve using addition-subtraction chains},
url = {http://eudml.org/doc/92374},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Morain, François
AU - Olivos, Jorge
TI - Speeding up the computations on an elliptic curve using addition-subtraction chains
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1990
PB - EDP-Sciences
VL - 24
IS - 6
SP - 531
EP - 543
LA - eng
KW - algorithms; addition-subtraction chains; exponentiation; computations on elliptic curves; factorization; primality testing; Atkin's test
UR - http://eudml.org/doc/92374
ER -

References

top
  1. 1. A. O. L. ATKIN, Manuscript. 
  2. 2. F. BERGERON, J. BERSTEL, S. BRLEK and C. DUBOC, Addition Chains using Continued Fractions, Journal of Algorithms, 10, 3, 1989, pp. 403-412. Zbl0682.68025MR1006993
  3. 3. W. BOSMA, Primality Testing using Elliptic Curves, Report 85-12, Math. Instituut, Universeit van Amsterdam. Zbl1103.11039
  4. 4. A. BRAUER, On Addition Chains, Bull. Amer Math. Soc, 45, 1939, pp. 736-739. Zbl65.0154.02MR245JFM65.0154.02
  5. 5. R. P. BRENT, Some Integer Factorization Algorithms using Elliptic Curves, Research Report CMA-R32-85, The Australian National University, Canberra, 1985. 
  6. 6. J. BRILLHART, D. H. LEHMER, B. TUCKERMAN and S. S. Jr. WAGSTAFF, Factorizations of bn±1, B = 2, 3, 5, 6, 1, 10, 11, 12 up to High Powers, Contemporary Math., A. M. S., 1983, Zbl0527.10001
  7. 7. J. W. S. CASSELS, Diophantine Equations with Special References to Elliptic Curves, J. London Math. Soc., 1966, pp. 193-291. Zbl0138.27002MR199150
  8. 8. B. W. CHAR, K. O. GEDDES, G. H. GONNET and S. M. WATT, MAPLE, Reference Marmal, Fourth Edition, Symbolic Computation Group, Department of Computer Science, University of Waterloo, 1985. 
  9. 9. D. V. CHUDNOVSKY and G. V. CHUDNOVSKY, Sequences of Numbers Generated by Addition in Formal Groups and New primality and Factorization Tests, Research report RC 11262, I.B.M., Yorktown Heights, 1985. Zbl0614.10004
  10. 10. H. COHEN and A. K. LENSTRA, Implementation of a New Primality Test, Math. Comp., 1987, 177, pp. 103-121. Zbl0608.10001MR866102
  11. 11. P. ERDÖS, Remarks on Number Theory III : On Addition Chains, Acta Arithmetica, 1960, pp. 77-81. Zbl0219.10064MR121346
  12. 12. P. FLAJOLET, B. SALVY and P. ZIMMERMANN, Lambda-Upsilon-Omega : An assistant algorithms analyzer. In Applied Algebra, Algebraic Algotithms and Error-Correcting Codes (1989), T. MORA, Ed., Lecture Notes in Comp. Sci., 357, pp. 201-212. (Proceedings AAECC'6, Rome, July 1988). Zbl0681.68064MR1008504
  13. 13. P. FLAJOLET, B. SALVY and P. ZIMMERMANN, Lambda-Upsilon-Omega : The, 1989 Cookbook, Research Report 1073, Institut National de Recherche en Informatique et en Automatique, August 1989, 116 pages. 
  14. 14. S. GOLDWASSER and J. KILIAN, Almost all Primes can be quickly Certified. Proc. 18th A.C.M. Symp. on the Theory of Compt., Berkeley, 1986, pp. 316-329. 
  15. 15. G. H. GONNET, Handbook of Algorithms and Data Structures, Addison-Wesley, 1984. Zbl0665.68001
  16. 16. D. H. GREENE, Labelled Formal Languages and Their Uses, Technical Report STAN-CS-83-982, Stanford University, 1983. 
  17. 17. B. S. Jr. KALISKI, A Pseudo-Random Bit Generator Based on Elliptic Logarithms, Proc. Crypto 86, pp. 13-1, 13-21. Zbl0635.94011
  18. 18. D. E. KNUTH, Seminumerical Algorithms, The Art of Computer Programming, T. II, Addisoon-Wesley. Zbl0895.65001
  19. 19. N. KOBLITZ, Elliptic curve cryptosystems. Math. Comp., 1987, 48, 177, pp. 203-209. Zbl0622.94015MR866109
  20. 20. H. W. Jr. LENSTRA, Factoring with Elliptic Curves, Report 86-18, Math. Inst., Univ. Amsterdam, 1986. Zbl0596.10007
  21. 21. H. W. Jr. LENSTRA, Elliptic Curves and Number Theoretic Algorithms, Report 86-19, Math. Inst., Univ. Amsterdam, 1986. MR934218
  22. 22. H. W. Jr. LENSTRA, Factoring integers with elliptic curves. Annals of Math., 1987, 126, pp. 649-673. Zbl0629.10006MR916721
  23. 23. D. P. MCCARTHY, The Optimal Algorithm to Evaluate xn using Elementary Multiplication Methods, Math. Comp., 1977, 31, 137, pp. 251-256. Zbl0348.65041MR428791
  24. 24. D. P. MCCARTHY, Effect to Improved Multiplication Efficiency on Exponentiation Algorithms Derived from Addition Chains, Math. Comp., 1986, 46, 174, pp. 603-608. Zbl0608.68027MR829630
  25. 25. P. L. MONTGOMERY, Modular Multiplication without Trial Division, Math. Comp., 1985, 44, 170, pp. 519-521. Zbl0559.10006MR777282
  26. 26. F. MORAIN, Implementation of the Atkin-Goldwasser-Kilian test. I.N.R.I.A. Research, Report 911, 1988. 
  27. 27. F. MORAIN and J. OLIVOS, Un algorithmo de Evaluación de Potencia utilizando Cadenas de Suma y Resta, Proc. XIV Conference Latinoamericana de Informatica (C.L.E.I., Expodata), Buesnos Aires, September 1988. 
  28. 28. J. OLIVOS, On Vectorial Additions Chains. J. of Algorithms, 1981, 2, pp. 13-21. Zbl0466.68034MR640507
  29. 29. J.-M. POLLARD, Theorems on factorization and primality testing. Proc. Cambridge Phil. Soc., 1974, 76, pp. 521-528. Zbl0294.10005MR354514
  30. 30. R. L. RIVEST, A. SHAMIR and L. ADLEMAN, A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, Comm. of the A.C.M., 1978, 21, 2, pp. 120-126. Zbl0368.94005MR700103
  31. 31. A. SCHÖNHAGE, A Lower Bound for the Length of Addition Chains, Theor. Comput. Science, 1975, 1, 1, pp. 1-12. Zbl0307.68032MR478756
  32. 32. J. T. TATE, The Arithmetic of Elliptic Curves, Inventiones Math., 1974, 23, pp.179-206. Zbl0296.14018MR419359

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.