Majoration de la norme des facteurs d'un polynôme : cas où toutes les racines du polynôme sont réelles

P. Glesser

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1993)

  • Volume: 27, Issue: 2, page 121-134
  • ISSN: 0988-3754

How to cite

top

Glesser, P.. "Majoration de la norme des facteurs d'un polynôme : cas où toutes les racines du polynôme sont réelles." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 27.2 (1993): 121-134. <http://eudml.org/doc/92441>.

@article{Glesser1993,
author = {Glesser, P.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {zeros of polynomials; upper bounds; polynomial factorization; lower bound},
language = {fre},
number = {2},
pages = {121-134},
publisher = {EDP-Sciences},
title = {Majoration de la norme des facteurs d'un polynôme : cas où toutes les racines du polynôme sont réelles},
url = {http://eudml.org/doc/92441},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Glesser, P.
TI - Majoration de la norme des facteurs d'un polynôme : cas où toutes les racines du polynôme sont réelles
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1993
PB - EDP-Sciences
VL - 27
IS - 2
SP - 121
EP - 134
LA - fre
KW - zeros of polynomials; upper bounds; polynomial factorization; lower bound
UR - http://eudml.org/doc/92441
ER -

References

top
  1. 1. B. BEAUZAMY, Degree-free upper estimates in polynomial factorizations, (manuscrit). 
  2. 2. P. ERDÖS, P. TURÁN, On the distribution of the roots of polynomials, Ann. Math., 51, 1950, p. 105-119. Zbl0036.01501MR33372
  3. 3. T. GANELIUS, Sequences of analytic functions and their zeros, Arkiv för Math, 3, 1954-1958, p. 1-50. Zbl0055.06905MR62826
  4. 4. Ph. GLESSER, Bornes pour les algorithmes de factorisation des polynômes, Thèse de Doctorat. 
  5. 5. Ph. GLESSER, Nouvelle majoration de la norme des facteurs d'un polynôme, Comptes-Rendus de l'Acad. Roy. du Canada, XII, n° 6, 1990, p. 224-228. Zbl0729.12001MR1088308
  6. 6. D. E. KNUTH, The art of computer programming, Vol. 2, Seminumerical algorithms, Addison-Wesley, 1981. Zbl0477.65002MR633878
  7. 7. E. LANDAU, Sur quelques théorèmes de M. Petrovic relatifs aux zéros des fonctions analytiques, Bull. Soc. Math, de France., 33, 1905, p. 251-261. Zbl36.0467.01MR1504527JFM36.0467.01
  8. 8. A. K. LENSTRA, H. W. Jr. LENSTRA, L. LOVÀSZ, Factoring polynomials with rational coefficients, Math. Ann., 261, 1982, p. 515-534. Zbl0488.12001MR682664
  9. 9. M. MIGNOTTE, An inequality about factors of polynomials, Math. Comp., 28, 1974, p. 1153-1157. Zbl0299.12101MR354624
  10. 10. M. MIGNOTTE, An inequality about irreducible factors of integer polynomials, J. of Number Theory, 30, 1988, p. 156-166. Zbl0648.12002MR961913
  11. 11. M. MIGNOTTE, Ph. GLESSER, An inequality about irreducible factors of integer polynomials (II), SYMSAC August 1990 (Tokyo). Zbl0739.11010MR1123956
  12. 12. I. SCHUR, Preuss. Akad. Wiss. Sitzungsber. 1933, p. 403-428. Zbl0007.00101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.