An approach to parallel algorithm design

G. Georgakopoulos; A. Stafylopatis

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1993)

  • Volume: 27, Issue: 2, page 85-95
  • ISSN: 0988-3754

How to cite

top

Georgakopoulos, G., and Stafylopatis, A.. "An approach to parallel algorithm design." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 27.2 (1993): 85-95. <http://eudml.org/doc/92445>.

@article{Georgakopoulos1993,
author = {Georgakopoulos, G., Stafylopatis, A.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {task assignment; parallel processors; NP-complete; task graphs; Point symmetric graphs},
language = {eng},
number = {2},
pages = {85-95},
publisher = {EDP-Sciences},
title = {An approach to parallel algorithm design},
url = {http://eudml.org/doc/92445},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Georgakopoulos, G.
AU - Stafylopatis, A.
TI - An approach to parallel algorithm design
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1993
PB - EDP-Sciences
VL - 27
IS - 2
SP - 85
EP - 95
LA - eng
KW - task assignment; parallel processors; NP-complete; task graphs; Point symmetric graphs
UR - http://eudml.org/doc/92445
ER -

References

top
  1. 1. F. AFRATI, Ch. PAPADIMITRIOU and G. PAPAGEORGIOU, Scheduling Dags to Minimize Time and Communication, Aegian Workshop on Computing (AWOC), Corfu, June 1988. MR1017467
  2. 2. A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974. Zbl0326.68005MR413592
  3. 3. S. G. AKL, The Design and Analysis of Parallel Algorithms, Prentice-Hall, 1989. Zbl0754.68053
  4. 4. N. BIGGS, Algebraic Graph Theory, Cambridge University Press, 1974. Zbl0284.05101MR347649
  5. 5. R. B. BOPPANA, J. HASTAD and S. ZACHOS, Does Co-NP Have Short Interactive Proofs?, Information Processing Letters, Vol. 25, 1987, pp. 27-32. Zbl0653.68037MR896155
  6. 6. E. G. COFFMAN and P. J. DENNING, Operating Systems Theory, Prentice-Hall, 1973. 
  7. 7. E. G. COFFMAN (Editor), Computer and Job-shop Scheduling Theory, John Wiley, 1976. Zbl0359.90031MR629691
  8. 8. M. R. GAREY and D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Co., San Francisco, 1979. Zbl0411.68039MR519066
  9. 9. D. K. GOYAL, Scheduling Processor Bound Systems, Report No CS-76-036, Washington State University, 1976. 
  10. 10. F. HARARY, Graph Theory, Addison-Wesley, 1972. Zbl0182.57702MR256911
  11. 11. R. M. KARP, A Survey of Parallel Algorithms for Shared-Memory Machines, Report No. UCB/CSD 88/408, University of California Berkeley, March 1988. 
  12. 12. M. E. LUKS, Isomorphism of Graphs of Bounded Valence Can Be Tested In Polynomial Time, Journal of Computer and System Sciences, Vol. 25, 1982, pp. 42-65. Zbl0493.68064MR685360
  13. 13. G. SABIDUSSI, Vertex Transitive Graphs, Monatshefte für Mathematik, 68, 1964, pp. 426-438. Zbl0136.44608MR175815

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.