On the restricted equivalence for subclasses of propositional logic
A. Flögel; H. Kleine Büning; T. Lettmann
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1993)
- Volume: 27, Issue: 4, page 327-340
- ISSN: 0988-3754
Access Full Article
topHow to cite
topReferences
top- 1. B. ASPVALL, M. F. PLASS and R. E. TARJAN, A linear-time algorithm for testing the truth of certain quantified boolean formulas, Information Processing letters, 8, 1979, pp. 121-123. Zbl0398.68042MR526451
- 2. S. van DENNEHEUVEL and K. L. KWAST, Weak equivalence for constraint sets, Proc. IJCAI-91, Sidney, Australie, Vol. 2, 1991, pp. 851-856. Zbl0749.68018
- 3. E. M. GOLD, Complexity of automaton identification from given data, unpublished manuscript, 1974.
- 4. J. N. HOOKER, Logical inference and polyhedral projection, to appear in Proc. CSL'91, Springer LNCS, 1991. Zbl0819.68105MR1232887
- 5. H. KLEINE BÜNING, M. KARPINSKI and A. FLÖGEL, Resolution for quantified boolean formulas, to appear in Information and Cornputation. Zbl0828.68045MR1318810
- 6. L. J. STOCKMEYER and A. R. MEYER, World problems requiring exponential time, Proc. 5th Ann. ACM Symp. Theory of Computing, 1973, pp. 1-9. Zbl0359.68050MR418518
- 7. L. J. STOCKMEYER, The polynomial-time hierarchy, Theoretical computer Science, 3, 1977, pp. 1-22. Zbl0353.02024MR438810
- 8. G. S. TSEITIN, On the complexity of dérivations in propositional calculus, in A. O. Slisenko (ed.): Studies in constructive mathematics and mathematical logic, Consultants bureau, New York, 1970, part II, pp. 115-125. Zbl0205.00402