Fractal geometry, Turing machines and divide-and-conquer recurrences
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1994)
- Volume: 28, Issue: 3-4, page 405-423
- ISSN: 0988-3754
Access Full Article
topHow to cite
topDube, S.. "Fractal geometry, Turing machines and divide-and-conquer recurrences." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 28.3-4 (1994): 405-423. <http://eudml.org/doc/92487>.
@article{Dube1994,
author = {Dube, S.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {iterated function systems; fractal geometry},
language = {eng},
number = {3-4},
pages = {405-423},
publisher = {EDP-Sciences},
title = {Fractal geometry, Turing machines and divide-and-conquer recurrences},
url = {http://eudml.org/doc/92487},
volume = {28},
year = {1994},
}
TY - JOUR
AU - Dube, S.
TI - Fractal geometry, Turing machines and divide-and-conquer recurrences
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1994
PB - EDP-Sciences
VL - 28
IS - 3-4
SP - 405
EP - 423
LA - eng
KW - iterated function systems; fractal geometry
UR - http://eudml.org/doc/92487
ER -
References
top- 1. M. F. BARNSLEY, Fractals Everywhere, Academic Press, 1988. Zbl0691.58001MR1231795
- 2. J. L. BENTLEY, D. HAKEN and J. B. SAXE, A General Method for Solving Divide-and-Conquer Recurrences, SIGACT News, 1980, 12, pp. 36-44. Zbl0451.68038
- 3. L. BLUM, M. SHUB and S. SMALE, On a Theory of Computation and Complexity over the Real Numbers: NP Completeness, recursive functions and universal machines, Bulletin of American Mathematical Society, 1989, 21, pp. 1-46. Zbl0681.03020MR974426
- 4. T. H. CORMEN, C. E. LEISERSON and R. L. RIVEST, Introduction to Algorithms, MIT Press, 1990. Zbl1158.68538MR1066870
- 5. K. CULIK II and S. DUBE, Affine Automata and Related Techniques for Generation of Complex Images, Theoretical Computer Science, 1993, 116, pp. 373-398. Zbl0779.68062MR1231951
- 6. K. CULIK II and S. DUBE, Encoding Images as Words and Languages, International Journal of Algebra and Computation, 1993, 3, No. 2, pp. 211-236. Zbl0777.68056MR1233222
- 7. S. DUBE, Undecidable Problems in Fractal Geometry, Technical Report 93-71, Dept. of Math. and Comp. Sci., University of New England at Armidale, Australia. Zbl0816.58024MR1307741
- 8. S. DUBE, Using Fractal Geometry for Solving Divide-and-Conquer Recurrences, to appear in Journal of Aust. Math. Soc., Applied Math., Preliminary version in Proc. of ISAAC'93, Hong Kong. Lecture Notes in Computer Science, Springer-Verlag, 762, pp. 191-200. Zbl0852.68101MR1359178
- 9. K. J. FALCONER, Digital Sun Dials, Paradoxical Sets and Vitushkin's Conjecture, Math Intelligencer, 1987, 9, pp. 24-27. Zbl0609.28005
- 10. J. GLEICK, Chaos-Making a New Science, Penguin Books, 1988. Zbl0706.58002MR1010647
- 11. J. E. HOPCROFT and J. D. ULLMAN, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, 1979. Zbl0426.68001MR645539
- 12. J. HUTCHINSON, Fractals and Self-similarity, Indiana University Journal of Mathematics, 1981, 30, pp. 713-747. Zbl0598.28011MR625600
- 13. B. MANDELBROT, The Fractal Geometry of Nature, W. H. Freeman and Co., San Francisco, 1982. Zbl0504.28001MR665254
- 14. R. PENROSE, The Emperor's New Mind, Oxford University Press, Oxford, 1990. Zbl0795.00009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.