On existentially first-order definable languages and their relation to NP
Bernd Borchert; Dietrich Kuske; Frank Stephan
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)
- Volume: 33, Issue: 3, page 259-269
- ISSN: 0988-3754
Access Full Article
topHow to cite
topBorchert, Bernd, Kuske, Dietrich, and Stephan, Frank. "On existentially first-order definable languages and their relation to NP." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.3 (1999): 259-269. <http://eudml.org/doc/92602>.
@article{Borchert1999,
author = {Borchert, Bernd, Kuske, Dietrich, Stephan, Frank},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {polynomial-time hierarchy; first-order logic; existential definability; regular language; automata},
language = {eng},
number = {3},
pages = {259-269},
publisher = {EDP-Sciences},
title = {On existentially first-order definable languages and their relation to NP},
url = {http://eudml.org/doc/92602},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Borchert, Bernd
AU - Kuske, Dietrich
AU - Stephan, Frank
TI - On existentially first-order definable languages and their relation to NP
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 3
SP - 259
EP - 269
LA - eng
KW - polynomial-time hierarchy; first-order logic; existential definability; regular language; automata
UR - http://eudml.org/doc/92602
ER -
References
top- [1] R. Beigel and J. Gill, Counting classes: Thresholds, parity, mods, and fewness. Theoret. Comput. Sci. 103 (1992) 3-23. Zbl0760.68028MR1181036
- [2] B. Borchert, On the acceptance power of regular languages. Theoret. Comput. Sci. 148 (1995) 207-225. Zbl0873.68121MR1355587
- [3] D. P. Bovet, P. Crescenzi and R. Silvestri, A uniform approach to define complexity classes. Theoret. Comput. Sci. 104 (1992) 263-283. Zbl0754.68049MR1186181
- [4] H.-J. Burtschick and H. Vollmer, Lindström Quantifiers and Leaf Language Definability. Internat. J. Found. Comput. Sci. 9 (1998) 277-294. Zbl1319.68104
- [5] J.-Y. Cai, T. Gundermann, J. Hartmanis, L. A. Hemachandra, V. Sewelson, K. Wagner and G. Wechsung, The Boolean Hierarchy I: Structural properties. SIAM J. Comput. 17 (1988) 1232-1252. Zbl0676.68011MR972671
- [6] R. Chang, J. Kadin and P. Rohatgi, On unique satisfiability and the threshold behaviour of randomized reductions. J. Comput. System Sci. 50 (1995) 359-373. Zbl0837.68026MR1339547
- [7] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer and K. Wagner, On the power of polynomial-time bit-computations, In: Proc. 8th Structure in Complexity Theory Conference, IEEE Computer Society Press (1993) 200-207. MR1310801
- [8] R. McNaughton and S. Papert, Counter-Free Automata, MIT Press, Cambridge, MA (1971). Zbl0232.94024MR371538
- [9] J.-E. Pin and P. Weil, Polynomial closure and unambiguous product. Theory Comput. Systems 30 (1997) 383-422. Zbl0872.68119MR1450862
- [10] H. Straubing, Finite Automata, Formal Logic, and Circuit Complexity, Birkhäuser, Boston (1994). Zbl0816.68086MR1269544
- [11] W. Thomas, Classifying regular events in symbolic logic. J. Comput. System Sci. 25 (1982) 360-376. Zbl0503.68055MR684265
- [12] S. Toda, PP is as hard as the Polynomial-Time Hierarchy. SIAM J. Comput. 20 (1991) 865-877. Zbl0733.68034MR1115655
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.