Topologies, continuity and bisimulations

J. M. Davoren

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)

  • Volume: 33, Issue: 4-5, page 357-381
  • ISSN: 0988-3754

How to cite

top

Davoren, J. M.. "Topologies, continuity and bisimulations." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.4-5 (1999): 357-381. <http://eudml.org/doc/92609>.

@article{Davoren1999,
author = {Davoren, J. M.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {set-valued maps; semi-continuity; modal -calculus; bisimulation relation; formal analysis and verification of hybrid control systems; algebraic semantics; Alexandroff topology; decidability; first-order definable hybrid dynamical systems},
language = {eng},
number = {4-5},
pages = {357-381},
publisher = {EDP-Sciences},
title = {Topologies, continuity and bisimulations},
url = {http://eudml.org/doc/92609},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Davoren, J. M.
TI - Topologies, continuity and bisimulations
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 4-5
SP - 357
EP - 381
LA - eng
KW - set-valued maps; semi-continuity; modal -calculus; bisimulation relation; formal analysis and verification of hybrid control systems; algebraic semantics; Alexandroff topology; decidability; first-order definable hybrid dynamical systems
UR - http://eudml.org/doc/92609
ER -

References

top
  1. [1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis and S. Yovine, The algorithmic analysis of hybrid Systems. Theoret. Comput. Sci. 138 (19953-34. Zbl0874.68206MR1318291
  2. [2] S. Ambler, M. Z. Kwiatkowska and N. Measor, Duality and the completeness of the modal μ-calculus. Theoret Comput. Sci. 151 (1995) 3-27. Zbl0872.03010MR1362147
  3. [3] J.-P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhäuser, Boston (1990). Zbl0713.49021MR1048347
  4. [4] M. Bonsangue and M. Kwiatkowska, Reinterpreting the modal μ-calculus, A. Ponse, M. de Rijke and Y. Venema, Eds., Modal Logic and Process Algebra. CLSI Publications, Stanford (1995) 65-83. MR1375702
  5. [5] J. Davoren, Modal Logics for Continuous Dynamics. Ph. D. Thesis, Department of Mathematics Cornell University (1998). MR2696762
  6. [6] J. M. Davoren, On hybrid Systems and the modal μ-calculus, P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode and S. Sastry, Eds., Hybrid Systems V. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 1567 (1999) 38-69. Zbl0928.93027
  7. [7] C. Daws, A. Olivero, S. Tripakis and S. Yovine, The tool KRONOS, R. Alur, T. Henzinger and E. D. Sontag, Eds., Hybrid Systems III. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 1066 (1996) 208-219. 
  8. [8] T. Henzinger, The theory of hybrid automata, in Proc. of 11th Annual IEEE Symposium on Logic in Computer Science (LICS'96). IEEE Computer Society Press (1996) 278-292. MR1461841
  9. [9] T. Henzinger, P. Kopke, A. Puri and P. Varaiya, What's decidable about hybrid automata? J. Comput. System Sci. 57 (1998) 94-124. Zbl0920.68091MR1649810
  10. [10] M. Hollenberg, Logic and Bisimulation. Ph. D. Thesis, Department of Philosophy, Utrecht University (1998). 
  11. [11] B. Jónsson and A. Tarski, Boolean algebras with operators, part i. Amer. J. Math. 73 (1951) 891-939. Zbl0045.31505MR44502
  12. [12] D. Kozen, Results on the propositional µ-calculus. Theoret Comput. Sci. 27 (1983) 333-354. Zbl0553.03007MR731069
  13. [13] G. Lafferriere, G. Pappas and S. Sastry, O-minimal hybrid Systems. Technical Report UCB/ERL M98/29, Dept. EECS, UC Berkeley (1998). Zbl1059.68073MR1742137
  14. [14] G. Lafferriere, G. Pappas and S. Yovine, Decidable hybrid Systems. Technical Report UCB/ERL M98/39, Dept. EECS, UC Berkeley (1998). Zbl0926.93036
  15. [15] A. Nerode and W. Kohn, Models for hybrid Systems: Automata, topologies, controllability, observability, R. Grossman, A. Nerode, A. Ravn and H. Rischel, Eds., Hybrid Systems. Springer-Verlag, Berlin, Lecture Notes in Comput Sci. 736 (1993297-316. 
  16. [16] M. B. Smyth, Topology, S. Abramsky, D. Gabbay and T. Maibaum, Eds. Oxford University Press, Clarendon Press, Oxford, Handb. Log. Comput Sci. 1 (1992) 641-761. MR1426367
  17. [17] C. Stirling, Modal and temporal logics, S. Abramsky, D. Gabbay and T. Maibaum, Eds. Oxford University Press, Clarendon Press, Oxford, Handb. Log. Comput Sci. 2 (1992) 477-563. MR1381700
  18. [18] L. van den Dries, Tame Topology and O-minimal Structures. Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser. 248 (1998). Zbl0953.03045MR1633348
  19. [19] I. Walukiewicz, A note on the completeness of Kozen's axiomatization of the propositonal µ-calculus. Bull. Symbolic Logic 2 (1996349-366. Zbl0868.03010MR1416873

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.