Topologies, continuity and bisimulations
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)
- Volume: 33, Issue: 4-5, page 357-381
- ISSN: 0988-3754
Access Full Article
topHow to cite
topDavoren, J. M.. "Topologies, continuity and bisimulations." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.4-5 (1999): 357-381. <http://eudml.org/doc/92609>.
@article{Davoren1999,
author = {Davoren, J. M.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {set-valued maps; semi-continuity; modal -calculus; bisimulation relation; formal analysis and verification of hybrid control systems; algebraic semantics; Alexandroff topology; decidability; first-order definable hybrid dynamical systems},
language = {eng},
number = {4-5},
pages = {357-381},
publisher = {EDP-Sciences},
title = {Topologies, continuity and bisimulations},
url = {http://eudml.org/doc/92609},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Davoren, J. M.
TI - Topologies, continuity and bisimulations
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 4-5
SP - 357
EP - 381
LA - eng
KW - set-valued maps; semi-continuity; modal -calculus; bisimulation relation; formal analysis and verification of hybrid control systems; algebraic semantics; Alexandroff topology; decidability; first-order definable hybrid dynamical systems
UR - http://eudml.org/doc/92609
ER -
References
top- [1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis and S. Yovine, The algorithmic analysis of hybrid Systems. Theoret. Comput. Sci. 138 (19953-34. Zbl0874.68206MR1318291
- [2] S. Ambler, M. Z. Kwiatkowska and N. Measor, Duality and the completeness of the modal μ-calculus. Theoret Comput. Sci. 151 (1995) 3-27. Zbl0872.03010MR1362147
- [3] J.-P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhäuser, Boston (1990). Zbl0713.49021MR1048347
- [4] M. Bonsangue and M. Kwiatkowska, Reinterpreting the modal μ-calculus, A. Ponse, M. de Rijke and Y. Venema, Eds., Modal Logic and Process Algebra. CLSI Publications, Stanford (1995) 65-83. MR1375702
- [5] J. Davoren, Modal Logics for Continuous Dynamics. Ph. D. Thesis, Department of Mathematics Cornell University (1998). MR2696762
- [6] J. M. Davoren, On hybrid Systems and the modal μ-calculus, P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode and S. Sastry, Eds., Hybrid Systems V. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 1567 (1999) 38-69. Zbl0928.93027
- [7] C. Daws, A. Olivero, S. Tripakis and S. Yovine, The tool KRONOS, R. Alur, T. Henzinger and E. D. Sontag, Eds., Hybrid Systems III. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 1066 (1996) 208-219.
- [8] T. Henzinger, The theory of hybrid automata, in Proc. of 11th Annual IEEE Symposium on Logic in Computer Science (LICS'96). IEEE Computer Society Press (1996) 278-292. MR1461841
- [9] T. Henzinger, P. Kopke, A. Puri and P. Varaiya, What's decidable about hybrid automata? J. Comput. System Sci. 57 (1998) 94-124. Zbl0920.68091MR1649810
- [10] M. Hollenberg, Logic and Bisimulation. Ph. D. Thesis, Department of Philosophy, Utrecht University (1998).
- [11] B. Jónsson and A. Tarski, Boolean algebras with operators, part i. Amer. J. Math. 73 (1951) 891-939. Zbl0045.31505MR44502
- [12] D. Kozen, Results on the propositional µ-calculus. Theoret Comput. Sci. 27 (1983) 333-354. Zbl0553.03007MR731069
- [13] G. Lafferriere, G. Pappas and S. Sastry, O-minimal hybrid Systems. Technical Report UCB/ERL M98/29, Dept. EECS, UC Berkeley (1998). Zbl1059.68073MR1742137
- [14] G. Lafferriere, G. Pappas and S. Yovine, Decidable hybrid Systems. Technical Report UCB/ERL M98/39, Dept. EECS, UC Berkeley (1998). Zbl0926.93036
- [15] A. Nerode and W. Kohn, Models for hybrid Systems: Automata, topologies, controllability, observability, R. Grossman, A. Nerode, A. Ravn and H. Rischel, Eds., Hybrid Systems. Springer-Verlag, Berlin, Lecture Notes in Comput Sci. 736 (1993297-316.
- [16] M. B. Smyth, Topology, S. Abramsky, D. Gabbay and T. Maibaum, Eds. Oxford University Press, Clarendon Press, Oxford, Handb. Log. Comput Sci. 1 (1992) 641-761. MR1426367
- [17] C. Stirling, Modal and temporal logics, S. Abramsky, D. Gabbay and T. Maibaum, Eds. Oxford University Press, Clarendon Press, Oxford, Handb. Log. Comput Sci. 2 (1992) 477-563. MR1381700
- [18] L. van den Dries, Tame Topology and O-minimal Structures. Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser. 248 (1998). Zbl0953.03045MR1633348
- [19] I. Walukiewicz, A note on the completeness of Kozen's axiomatization of the propositonal µ-calculus. Bull. Symbolic Logic 2 (1996349-366. Zbl0868.03010MR1416873
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.