Opérateurs de convolution définis à partir d'une forme quadratique

Alain Bachelot

Journées équations aux dérivées partielles (1982)

  • page 1-8
  • ISSN: 0752-0360

How to cite

top

Bachelot, Alain. "Opérateurs de convolution définis à partir d'une forme quadratique." Journées équations aux dérivées partielles (1982): 1-8. <http://eudml.org/doc/93071>.

@article{Bachelot1982,
author = {Bachelot, Alain},
journal = {Journées équations aux dérivées partielles},
keywords = {inverse scattering problem; nonlinear Klein-Gordon equation; families of convolution operators; quadratic form; convergence for convolution operators},
language = {fre},
pages = {1-8},
publisher = {Ecole polytechnique},
title = {Opérateurs de convolution définis à partir d'une forme quadratique},
url = {http://eudml.org/doc/93071},
year = {1982},
}

TY - JOUR
AU - Bachelot, Alain
TI - Opérateurs de convolution définis à partir d'une forme quadratique
JO - Journées équations aux dérivées partielles
PY - 1982
PB - Ecole polytechnique
SP - 1
EP - 8
LA - fre
KW - inverse scattering problem; nonlinear Klein-Gordon equation; families of convolution operators; quadratic form; convergence for convolution operators
UR - http://eudml.org/doc/93071
ER -

References

top
  1. [1] A. Bachelot : Problème inverse de diffusion non linéaire, C.R. Acad. Sci. Paris, ser. A. 293 (1981), 121-124. Zbl0475.35070MR83d:35130
  2. [2] A. Bachelot : Inverse scattering problem for non linear Klein Gordon equation, à paraître dans "Contributions to non linear partial differential equations" dans la série Research Notes in Mathematics de Pitman Books Limited. Zbl0532.35051
  3. [3] C. Morawetz, W. Strauss : On a non linear scattering operator ; Comm. Pure Appl. Math. XXV, (1972), 1-31. Zbl0228.35055MR46 #2239
  4. [4] W. Strauss : non linear scattering theory at low energy. J. Func. Anal. 41 (1981), 110-133. Zbl0466.47006MR83b:47074a
  5. [5] R.S. Strichartz : Fourier transforms and Non-Compact Rotation Group. Indiana Univ. Math. J. 24 (1974), 499-527. Zbl0295.42015MR52 #1178
  6. [6] R.S. Strichartz : Restrictions of Fourier transforms to quadartic surfaces and decay of solutions of wave equations Duke Math. J. 44, (1977), 705-714. Zbl0372.35001MR58 #23577

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.