Théorie spectrale de la propagation des ondes acoustiques dans un milieu stratifié perturbe

Yves Dermenjian; Jean-Claude Guillot

Journées équations aux dérivées partielles (1983)

  • page 1-8
  • ISSN: 0752-0360

How to cite


Dermenjian, Yves, and Guillot, Jean-Claude. "Théorie spectrale de la propagation des ondes acoustiques dans un milieu stratifié perturbe." Journées équations aux dérivées partielles (1983): 1-8. <>.

author = {Dermenjian, Yves, Guillot, Jean-Claude},
journal = {Journées équations aux dérivées partielles},
keywords = {acoustic waves; perturbed stratified medium},
language = {fre},
pages = {1-8},
publisher = {Ecole polytechnique},
title = {Théorie spectrale de la propagation des ondes acoustiques dans un milieu stratifié perturbe},
url = {},
year = {1983},

AU - Dermenjian, Yves
AU - Guillot, Jean-Claude
TI - Théorie spectrale de la propagation des ondes acoustiques dans un milieu stratifié perturbe
JO - Journées équations aux dérivées partielles
PY - 1983
PB - Ecole polytechnique
SP - 1
EP - 8
LA - fre
KW - acoustic waves; perturbed stratified medium
UR -
ER -


  1. [1] S. AGMON : “Spectral properties of Schrödinger operators and scattering theory”, Ann. Scuola Norm. Sup. Pisa, ser. IV, 2 (1975), p.151-218. Zbl0315.47007MR53 #1053
  2. [2] S. AGMON et L. HÖRMANDER : “Asymptotic properties of solutions of differential equations with simple caracteristics”, J. Analyse Math. 30 (1976), p.1-38. Zbl0335.35013
  3. [3] M. BEN-ARTZI : “An application of asymptotic techniques to certain problems of spectral and scattering theory of Stark-like Hamiltonians”, Technion- Israel Institute of Technology, Haïfs preprint MT-523, Juin 1981. 
  4. [4] N. DUNFORD et J.J. SCHWARTZ : “Linear operators, part II : spectral theory”, Interscience Publishers (1963), New-York. Zbl0128.34803
  5. [5] J.C. GUILLOT : “Spectral theory and eigenfunctions expansion for Maxwell's equations in an asymetric dielectric slab”, non publié. 
  6. [6] J.C. GUILLOT et C.H. WILCOX : “Spectral analysis of the Epstein operator”, Proc. Roy. Soc. Edinburgh, 80 A (1978), p. 85-98. Zbl0398.35074MR80i:35137
  7. [7] I.W. HERBST : “Unitary equivalence of Stark Hamiltonians”, Math. Zeit, 155 (1977), p. 55-70. Zbl0338.47009MR56 #7623
  8. [8] L. HÖRMANDER : “Théorie de la diffusion à courte portée pour des opérateurs à caractéristiques simples”, Semi. Goulaouic-Meyer-Schwartz, exposé n°XIV, 17/02/1981. Zbl0482.35009
  9. [9] T. IKEBE : “Remarks on non-elliptic stationnary wave propagation problems”, Japan J. Math., vol.6, n°2 (1980), p.247-258. Zbl0539.35010MR82j:35117
  10. [10] H. TAMURA : “The principle of limiting absorption for uniformly propagative systems with perturbations of long-range class”, Nagoya Math. J., vol. 82 (1981), p. 141-174. Zbl0473.35063MR82h:35084
  11. [11] C.H. WILCOX : “Spectral analysis of sound propagation in stratified media”, rapport n°387 (1980), Université de Bonn. 
  12. [12] K. YAJIMA : “The limiting absorption principle for uniformly propagative systems”, J. Fac. Tokyo, vol 21, 1(1974), p.119-131. Zbl0289.35066MR49 #11068
  13. [13] K. YAJIMA : “Eigenfunction expansions associated with uniformly propagative systems and their applications to scattering theory”, J. Fac. Tokyo vol22,2(1975), p.121-151. Zbl0313.35061MR53 #13870
  14. [14] K. YAJIMA : “Spectral and scattering theory for Schrödinger operators with Stark-effect”, preprint. Zbl0429.35027

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.