Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations

Tanya Christiansen[1]; M. S. Joshi[2]

  • [1] University of Missouri, Department of Mathematics, 201 Math Sciences Bldg, Columbia MO 65211 (USA)
  • [2] Royal Bank of Scotland, Group Risk, Waterhouse Square, 138-142 Holborn, London EC1N 2TH (Grande-Bretagne)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 2, page 565-624
  • ISSN: 0373-0956

Abstract

top
The scattering matrix is defined on a perturbed stratified medium. For a class of perturbations, its main part at fixed energy is a Fourier integral operator on the sphere at infinity. Proving this is facilitated by developing a refined limiting absorption principle. The symbol of the scattering matrix determines the asymptotics of a large class of perturbations.

How to cite

top

Christiansen, Tanya, and Joshi, M. S.. "Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations." Annales de l’institut Fourier 53.2 (2003): 565-624. <http://eudml.org/doc/116046>.

@article{Christiansen2003,
abstract = {The scattering matrix is defined on a perturbed stratified medium. For a class of perturbations, its main part at fixed energy is a Fourier integral operator on the sphere at infinity. Proving this is facilitated by developing a refined limiting absorption principle. The symbol of the scattering matrix determines the asymptotics of a large class of perturbations.},
affiliation = {University of Missouri, Department of Mathematics, 201 Math Sciences Bldg, Columbia MO 65211 (USA); Royal Bank of Scotland, Group Risk, Waterhouse Square, 138-142 Holborn, London EC1N 2TH (Grande-Bretagne)},
author = {Christiansen, Tanya, Joshi, M. S.},
journal = {Annales de l’institut Fourier},
keywords = {stratified media; scattering matrix; inverse problems; limiting absorption principle},
language = {eng},
number = {2},
pages = {565-624},
publisher = {Association des Annales de l'Institut Fourier},
title = {Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations},
url = {http://eudml.org/doc/116046},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Christiansen, Tanya
AU - Joshi, M. S.
TI - Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 2
SP - 565
EP - 624
AB - The scattering matrix is defined on a perturbed stratified medium. For a class of perturbations, its main part at fixed energy is a Fourier integral operator on the sphere at infinity. Proving this is facilitated by developing a refined limiting absorption principle. The symbol of the scattering matrix determines the asymptotics of a large class of perturbations.
LA - eng
KW - stratified media; scattering matrix; inverse problems; limiting absorption principle
UR - http://eudml.org/doc/116046
ER -

References

top
  1. I. Beltiţă, Inverse scattering in a layered medium, C.R. Acad. Sci Paris, Sér. I Math 329 (1999), 927-932 Zbl0941.35134MR1728010
  2. I. Beltiţă, Inverse scattering in a layered medium, Comm. Partial Differential Equations 26 (2001), 1739-1786 Zbl1134.35385MR1865944
  3. M. Ben, - Artzi, Y. Dermenjian, J.-C. Guillot, Acoustic waves in perturbed stratified fluids: a spectral theory, Comm. Partial Differential Equations 14 (1989), 479-517 Zbl0675.35065MR989667
  4. A. Boutet de, Monvel, - Berthier, D. Manda, Spectral and scattering theory for wave propagation in perturbed stratified media, J. Math. Anal. Appl. 191 (1995), 137-167 Zbl0831.35119MR1323768
  5. T. Christiansen, Scattering theory for perturbed stratified media, Journal d'Analyse Mathématique 76 (1998), 1-44 Zbl0926.35106MR1676944
  6. T. Christiansen, M.S. Joshi, Higher order scattering on asymptotically Euclidean manifolds, Canadian J. Math 52 (2000), 897-919 Zbl0984.58019MR1782333
  7. T. Christiansen, M.S. Joshi, Recovering asymptotics at infinity of perturbations of stratified media, Équations aux Dérivées Partielles (La Chapelle sur Erdre, 2000) Exp. No. II (2000), Univ. Nantes, Nantes Zbl1213.35333
  8. A. Cohen, T. Kappeler, Scattering and inverse scattering for steplike potentials in the Schrödinger equation, Indiana Univ. Math. J 34 (1985), 127-180 Zbl0553.34015MR773398
  9. H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, (1987), Springer-Verlag, Berlin Zbl0619.47005MR883643
  10. S. DeBièvre, D.W. Pravica, Spectral analysis for optical fibres and stratified fluids I: the limiting absorption principle, J. Functional Analysis 98 (1991), 404-436 Zbl0731.35069MR1111576
  11. S. DeBièvre, D.W. Pravica, Spectral analysis for optical fibres and stratified fluids II: Absence of eigenvalues, Comm. Partial Differential Equations 17 (1992), 69-97 Zbl0850.35067MR1151257
  12. P. Deift, E. Trubowitz, Inverse scattering on the line, Commun. Pure Appl. Math 32 (1979), 121-251 Zbl0388.34005MR512420
  13. Y. Dermenjian, J.-C. Guillot, Théorie spectrale de la propagation des ondes acoustiques dans un milieu stratifié perturbé, J. Differential Equations 62 (1986), 357-409 Zbl0611.35063MR837761
  14. C. Gérard, H. Isozaki, E. Skibsted, Commutator algebra and resolvent estimates, Advanced Studies in Pure Mathematics 23 (1994), 69-82 Zbl0814.35086MR1275395
  15. J.-C. Guillot, J. Ralston, Inverse scattering at fixed energy for layered media, J. Math. Pures Appl (9) 78 (1999), 27-48 Zbl0930.35117MR1671219
  16. S. Helgason, Groups and Geometric Analysis, (1984), Academic Press, Orlando Zbl0543.58001MR754767
  17. B. Helffer, J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper, Schrödinger Operators vol. 345, 118-197, Springer-Verlag, New York Zbl0699.35189
  18. L. Hörmander, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math 32 (1979), 359-443 Zbl0388.47032MR180740
  19. L. Hörmander, The analysis of linear partial differential operators II, (1983), Springer-Verlag, Berlin Zbl0521.35002MR705278
  20. H. Isozaki, Inverse scattering for wave equations in stratified media, Journal of Differential Equations 138 (1997), 19-54 Zbl0878.35084MR1458455
  21. M.S. Joshi, Recovering asymptotics of Coulomb-like potentials from fixed energy scattering data, S.I.A.M. J. Math. Anal. 30 (1999), 516-526 Zbl0927.58016MR1677941
  22. M.S. Joshi, Explicitly recovering asymptotics of short range potentials, Comm. Partial Differential Equations 25 (2000), 1907-1923 Zbl0963.35148MR1778785
  23. M.S. Joshi, A. Sá, Barreto, Recovering asymptotics of short range potentials, Comm. Math. Phys 193 (1998), 197-208 Zbl0920.58052MR1620321
  24. M.S. Joshi, A. Sá, Barreto, Recovering asymptotics of metrics from fixed energy scattering data, Invent. Math 137 (1999), 127-143 Zbl0953.58025MR1703335
  25. M.S. Joshi, A. Sá, Barreto, Determining asymptotics of magnetic potentials from fixed energy scattering data, Asymptotic Analysis 21 (1999), 61-70 Zbl0934.35203MR1718632
  26. R.B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidean spaces, Spectral and Scattering Theory (1994), 85-130, Marcel Dekker, New York Zbl0837.35107
  27. R.B. Melrose, M. Zworski, Scattering metrics and geodesic flow at infinity, Invent. Math. 124 (1996), 389-436 Zbl0855.58058MR1369423
  28. A. Vasy, Asymptotic behavior of generalized eigenfunctions in N-body scattering, J. Funct. Anal 148 (1997), 170-184 Zbl0884.35110MR1461498
  29. A. Vasy, Structure of the resolvent for three-body potentials, Duke Math. J 90 (1997), 379-434 Zbl0891.35111MR1484859
  30. A. Vasy, Propagation of singularities in Euclidean many-body scattering in the presence of bound states, Journées Équations aux Dérivées Partielles (Saint-Jean-de-Monts, 1999) Exp. No. XVI (1999), Univ. Nantes, Nantes Zbl1003.35012
  31. R. Weder, The limiting absorption principle at thresholds, J. Math. Pures et Appl 67 (1988), 313-338 Zbl0611.76090MR978574
  32. R. Weder, Spectral and Scattering Theory for Wave Propagation in Perturbed Stratified Media, (1991), Springer-Verlag, New York Zbl0711.76083MR1082152
  33. R. Weder, Multidimensional inverse problems in perturbed stratified media, J. Differential Equations 152 (1999), 191-239 Zbl0922.35184MR1672028
  34. C. Wilcox, Sound Propagation in Stratified Fluids, 50, Springer-Verlag, New York, Berlin, Heidelberg Zbl0543.76107MR742932

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.