Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations
Tanya Christiansen[1]; M. S. Joshi[2]
- [1] University of Missouri, Department of Mathematics, 201 Math Sciences Bldg, Columbia MO 65211 (USA)
- [2] Royal Bank of Scotland, Group Risk, Waterhouse Square, 138-142 Holborn, London EC1N 2TH (Grande-Bretagne)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 2, page 565-624
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topChristiansen, Tanya, and Joshi, M. S.. "Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations." Annales de l’institut Fourier 53.2 (2003): 565-624. <http://eudml.org/doc/116046>.
@article{Christiansen2003,
abstract = {The scattering matrix is defined on a perturbed stratified medium. For a class of
perturbations, its main part at fixed energy is a Fourier integral operator on the sphere
at infinity. Proving this is facilitated by developing a refined limiting absorption
principle. The symbol of the scattering matrix determines the asymptotics of a large
class of perturbations.},
affiliation = {University of Missouri, Department of Mathematics, 201 Math Sciences Bldg, Columbia MO 65211 (USA); Royal Bank of Scotland, Group Risk, Waterhouse Square, 138-142 Holborn, London EC1N 2TH (Grande-Bretagne)},
author = {Christiansen, Tanya, Joshi, M. S.},
journal = {Annales de l’institut Fourier},
keywords = {stratified media; scattering matrix; inverse problems; limiting absorption principle},
language = {eng},
number = {2},
pages = {565-624},
publisher = {Association des Annales de l'Institut Fourier},
title = {Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations},
url = {http://eudml.org/doc/116046},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Christiansen, Tanya
AU - Joshi, M. S.
TI - Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 2
SP - 565
EP - 624
AB - The scattering matrix is defined on a perturbed stratified medium. For a class of
perturbations, its main part at fixed energy is a Fourier integral operator on the sphere
at infinity. Proving this is facilitated by developing a refined limiting absorption
principle. The symbol of the scattering matrix determines the asymptotics of a large
class of perturbations.
LA - eng
KW - stratified media; scattering matrix; inverse problems; limiting absorption principle
UR - http://eudml.org/doc/116046
ER -
References
top- I. Beltiţă, Inverse scattering in a layered medium, C.R. Acad. Sci Paris, Sér. I Math 329 (1999), 927-932 Zbl0941.35134MR1728010
- I. Beltiţă, Inverse scattering in a layered medium, Comm. Partial Differential Equations 26 (2001), 1739-1786 Zbl1134.35385MR1865944
- M. Ben, - Artzi, Y. Dermenjian, J.-C. Guillot, Acoustic waves in perturbed stratified fluids: a spectral theory, Comm. Partial Differential Equations 14 (1989), 479-517 Zbl0675.35065MR989667
- A. Boutet de, Monvel, - Berthier, D. Manda, Spectral and scattering theory for wave propagation in perturbed stratified media, J. Math. Anal. Appl. 191 (1995), 137-167 Zbl0831.35119MR1323768
- T. Christiansen, Scattering theory for perturbed stratified media, Journal d'Analyse Mathématique 76 (1998), 1-44 Zbl0926.35106MR1676944
- T. Christiansen, M.S. Joshi, Higher order scattering on asymptotically Euclidean manifolds, Canadian J. Math 52 (2000), 897-919 Zbl0984.58019MR1782333
- T. Christiansen, M.S. Joshi, Recovering asymptotics at infinity of perturbations of stratified media, Équations aux Dérivées Partielles (La Chapelle sur Erdre, 2000) Exp. No. II (2000), Univ. Nantes, Nantes Zbl1213.35333
- A. Cohen, T. Kappeler, Scattering and inverse scattering for steplike potentials in the Schrödinger equation, Indiana Univ. Math. J 34 (1985), 127-180 Zbl0553.34015MR773398
- H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, (1987), Springer-Verlag, Berlin Zbl0619.47005MR883643
- S. DeBièvre, D.W. Pravica, Spectral analysis for optical fibres and stratified fluids I: the limiting absorption principle, J. Functional Analysis 98 (1991), 404-436 Zbl0731.35069MR1111576
- S. DeBièvre, D.W. Pravica, Spectral analysis for optical fibres and stratified fluids II: Absence of eigenvalues, Comm. Partial Differential Equations 17 (1992), 69-97 Zbl0850.35067MR1151257
- P. Deift, E. Trubowitz, Inverse scattering on the line, Commun. Pure Appl. Math 32 (1979), 121-251 Zbl0388.34005MR512420
- Y. Dermenjian, J.-C. Guillot, Théorie spectrale de la propagation des ondes acoustiques dans un milieu stratifié perturbé, J. Differential Equations 62 (1986), 357-409 Zbl0611.35063MR837761
- C. Gérard, H. Isozaki, E. Skibsted, Commutator algebra and resolvent estimates, Advanced Studies in Pure Mathematics 23 (1994), 69-82 Zbl0814.35086MR1275395
- J.-C. Guillot, J. Ralston, Inverse scattering at fixed energy for layered media, J. Math. Pures Appl (9) 78 (1999), 27-48 Zbl0930.35117MR1671219
- S. Helgason, Groups and Geometric Analysis, (1984), Academic Press, Orlando Zbl0543.58001MR754767
- B. Helffer, J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper, Schrödinger Operators vol. 345, 118-197, Springer-Verlag, New York Zbl0699.35189
- L. Hörmander, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math 32 (1979), 359-443 Zbl0388.47032MR180740
- L. Hörmander, The analysis of linear partial differential operators II, (1983), Springer-Verlag, Berlin Zbl0521.35002MR705278
- H. Isozaki, Inverse scattering for wave equations in stratified media, Journal of Differential Equations 138 (1997), 19-54 Zbl0878.35084MR1458455
- M.S. Joshi, Recovering asymptotics of Coulomb-like potentials from fixed energy scattering data, S.I.A.M. J. Math. Anal. 30 (1999), 516-526 Zbl0927.58016MR1677941
- M.S. Joshi, Explicitly recovering asymptotics of short range potentials, Comm. Partial Differential Equations 25 (2000), 1907-1923 Zbl0963.35148MR1778785
- M.S. Joshi, A. Sá, Barreto, Recovering asymptotics of short range potentials, Comm. Math. Phys 193 (1998), 197-208 Zbl0920.58052MR1620321
- M.S. Joshi, A. Sá, Barreto, Recovering asymptotics of metrics from fixed energy scattering data, Invent. Math 137 (1999), 127-143 Zbl0953.58025MR1703335
- M.S. Joshi, A. Sá, Barreto, Determining asymptotics of magnetic potentials from fixed energy scattering data, Asymptotic Analysis 21 (1999), 61-70 Zbl0934.35203MR1718632
- R.B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidean spaces, Spectral and Scattering Theory (1994), 85-130, Marcel Dekker, New York Zbl0837.35107
- R.B. Melrose, M. Zworski, Scattering metrics and geodesic flow at infinity, Invent. Math. 124 (1996), 389-436 Zbl0855.58058MR1369423
- A. Vasy, Asymptotic behavior of generalized eigenfunctions in N-body scattering, J. Funct. Anal 148 (1997), 170-184 Zbl0884.35110MR1461498
- A. Vasy, Structure of the resolvent for three-body potentials, Duke Math. J 90 (1997), 379-434 Zbl0891.35111MR1484859
- A. Vasy, Propagation of singularities in Euclidean many-body scattering in the presence of bound states, Journées Équations aux Dérivées Partielles (Saint-Jean-de-Monts, 1999) Exp. No. XVI (1999), Univ. Nantes, Nantes Zbl1003.35012
- R. Weder, The limiting absorption principle at thresholds, J. Math. Pures et Appl 67 (1988), 313-338 Zbl0611.76090MR978574
- R. Weder, Spectral and Scattering Theory for Wave Propagation in Perturbed Stratified Media, (1991), Springer-Verlag, New York Zbl0711.76083MR1082152
- R. Weder, Multidimensional inverse problems in perturbed stratified media, J. Differential Equations 152 (1999), 191-239 Zbl0922.35184MR1672028
- C. Wilcox, Sound Propagation in Stratified Fluids, 50, Springer-Verlag, New York, Berlin, Heidelberg Zbl0543.76107MR742932
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.