Control and stabilization of wave equations
Claude Bardos; Gilles Lebeau; Jeff Rauch
Journées équations aux dérivées partielles (1987)
- page 1-15
- ISSN: 0752-0360
Access Full Article
topHow to cite
topBardos, Claude, Lebeau, Gilles, and Rauch, Jeff. "Contrôle et stabilisation pour l'équation des ondes." Journées équations aux dérivées partielles (1987): 1-15. <http://eudml.org/doc/93147>.
@article{Bardos1987,
author = {Bardos, Claude, Lebeau, Gilles, Rauch, Jeff},
journal = {Journées équations aux dérivées partielles},
keywords = {exact controllability; wave equation; Dirichlet boundary control; Hilbert uniqueness method; propagation of singularities; pseudo-differential equation; microlocal regularity; stabilization},
language = {fre},
pages = {1-15},
publisher = {Ecole polytechnique},
title = {Contrôle et stabilisation pour l'équation des ondes},
url = {http://eudml.org/doc/93147},
year = {1987},
}
TY - JOUR
AU - Bardos, Claude
AU - Lebeau, Gilles
AU - Rauch, Jeff
TI - Contrôle et stabilisation pour l'équation des ondes
JO - Journées équations aux dérivées partielles
PY - 1987
PB - Ecole polytechnique
SP - 1
EP - 15
LA - fre
KW - exact controllability; wave equation; Dirichlet boundary control; Hilbert uniqueness method; propagation of singularities; pseudo-differential equation; microlocal regularity; stabilization
UR - http://eudml.org/doc/93147
ER -
References
top- [1] G. Chen : Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain. J.M.P.A. 58 (9) (1979), 249-274. Zbl0414.35044MR81k:35093
- [2] C. Gérard : Asymptotique des poles de la matrice de scattering pour deux obstacles strictement convexes. Prépublication 86T.34 Département de Mathématiques Bat. 425 Université de Paris Sud 91405 Orsay. Zbl0622.35054
- [3] P. Grisvard : Controlabilité exacte dans les polygones et les polyhèdres note C.R.A.S. (1987). Zbl0621.93009
- [4] A. Haraux : Communication personnelle.
- [5] M. Ikawa : Decay of solution of the wave equation in the exterior of two convex obstacles. Osaka J. Math. 19 (1982), 459-509. Zbl0498.35008MR84e:35018
- [6] M. Ikawa : Trapping obstacles with asequence of poles of the scattering matrix converging to the real axis. Osaka J. Math. 22 (1985), 657-689. Zbl0617.35102MR87d:35107
- [7] N. Iwasaki : Local decay of solutions for symmetric hyperbolic systems with dissipative and coercive boundary conditions in exterior domains. publ. RIMS Kyoto U. 5 (1969), 193-218. Zbl0206.40003MR44 #5619
- [8] P. Lax et R. Philips : Scattering theory Academic Press1967. Zbl0186.16301
- [9] J.L. Lions : Exact controllability and perturbations for distributed systems Von Neumann Lecture, Boston SIAM meeeting July 1986.
- [10] J. Lagnese : Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Diff. Equations 50 (2) (1983), 163-182. Zbl0536.35043MR85f:35025
- [11] J. Lasiecka et R. Triggiani : Uniform exponential energy decay in a bounded region with L2(0,T ; L2(Ω))-feedback control in the Dirichlet boundary condition. A paraître au J. Diff. Equations. Zbl0629.93047
- [12] J. Ralston : Solutions of the wave equation with Localised Energy. Comm. Pure and Appl. Math. 31 (1969) 807-823. Zbl0209.40402MR40 #7642
- [13] R. Melrose et J. Sjöstrand : Singularities of boundary value problems I, Comm. Pure and Appl. Math. 22 (1978), 593-617. Zbl0368.35020MR58 #11859
- [14] J. Rauch et M. Taylor : Penetration into shadow region and unique continuation properties in hyperbolic mixed problems. Indiana University Mathematics J. 22 (1972), 277-285. Zbl0227.35064MR46 #2240
- [15] J. Rauch et M. Taylor : Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana University Mathematics J. 24 (1974), 79-86. Zbl0281.35012MR50 #13906
- [16] M. Taylor : Pseudodifferential Operators Princeton University Press ; 1980. Zbl0453.47026
- [17] E. Zuazua : Communication personnelle.
- [18] J. Chazarain — A. Piriou : Introduction à la théorie des équations aux dérivées partielles. Gauthiers-Villars (1981). Zbl0446.35001MR82i:35001
- [19] J.L. Lions — E. Magenes : Problèmes aux limites non homogènes et applications. Vol. 1-2. Dunod Zbl0165.10801
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.