Some remarks on the Cauchy problem for weakly hyperbolic equations

Ferruccio Colombini

Journées équations aux dérivées partielles (1992)

  • page 1-6
  • ISSN: 0752-0360

How to cite

top

Colombini, Ferruccio. "Quelques remarques sur le problème de Cauchy pour des équations faiblement hyperboliques." Journées équations aux dérivées partielles (1992): 1-6. <http://eudml.org/doc/93244>.

@article{Colombini1992,
author = {Colombini, Ferruccio},
journal = {Journées équations aux dérivées partielles},
keywords = {weakly hyperbolic equations; Cauchy problem; well-posed; characteristic roots},
language = {fre},
pages = {1-6},
publisher = {Ecole polytechnique},
title = {Quelques remarques sur le problème de Cauchy pour des équations faiblement hyperboliques},
url = {http://eudml.org/doc/93244},
year = {1992},
}

TY - JOUR
AU - Colombini, Ferruccio
TI - Quelques remarques sur le problème de Cauchy pour des équations faiblement hyperboliques
JO - Journées équations aux dérivées partielles
PY - 1992
PB - Ecole polytechnique
SP - 1
EP - 6
LA - fre
KW - weakly hyperbolic equations; Cauchy problem; well-posed; characteristic roots
UR - http://eudml.org/doc/93244
ER -

References

top
  1. [1] Bronštein M. D., The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity, Trudy Moskov. Mat. Obšč. 41 (1980), 87-103. Zbl0468.35062MR82m:35094
  2. [2] Bronštein M. D., Smoothness of roots of polynomials depending on parameters, Sibirskii Mat. Ž., 20 (1979), 493-501. Zbl0429.30007MR82c:26018
  3. [3] Colombini F., De Giorgi E., Spagnolo S., Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Scuola Norm. Sup. Pisa, 6 (1979), 511-559. Zbl0417.35049MR81c:35077
  4. [4] Colombini F., Jannelli E., Spagnolo S., Well-posedness in the Gevrey classes of the Cauchy problem for a nonstrictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa, 10 (1983), 291-312. Zbl0543.35056MR85f:35131
  5. [5] Colombini F., Orrù N., On the strong hyperbolicity in the Gevrey classes for some hyperbolic equations, en préparation. Zbl1007.35045
  6. [6] Ivrii V. Ya., Cauchy problem conditions for hyperbolic operators with characteristics of variable multiplicity for Gevrey classes, Sibirskii Mat. Ž, 17 (1976), 1256-1270. Zbl0352.35060
  7. [7] Ivrii V. Ya., Correctness in Gevrey classes of the Cauchy problem for some non-strictly hyperbolic operators, Izv. VUZ Mat. (189) (1978), 26-35. Zbl0395.35055
  8. [8] Mizohata S., On the Cauchy problem, Science Press, Beijing, et Academic Press, New York, 1985. Zbl0616.35002MR89a:35007
  9. [9] Uryu H., Conditions for well-posedness in the Gevrey classes of the Cauchy problem for Fuchsian hyperbolic operators, publ. Rims, Kyoto Univ., 21 (1985), 355-383. Zbl0585.35060MR86h:35002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.