Some results on the well-posedness for systems with time dependent coefficients
Marcello D’Abbicco[1]; Giovanni Taglialatela[2]
- [1] Dipartimento di Matematica, Università di Bari, via E. Orabona 4, 70125 Bari – Italy
- [2] Dipartimento di Scienze Economiche e Metodi Matematici, Facoltà di Economia, Università di Bari, via C. Rosalba 53, 70124 Bari – Italy
Annales de la faculté des sciences de Toulouse Mathématiques (2009)
- Volume: 18, Issue: 2, page 247-284
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topD’Abbicco, Marcello, and Taglialatela, Giovanni. "Some results on the well-posedness for systems with time dependent coefficients." Annales de la faculté des sciences de Toulouse Mathématiques 18.2 (2009): 247-284. <http://eudml.org/doc/10109>.
@article{D2009,
abstract = {We consider hyperbolic systems with time dependent coefficients and size $2$ or $3$. We give some sufficient conditions in order the Cauchy Problem to be well-posed in $\{\cal C\}^\infty $ and in Gevrey spaces.},
affiliation = {Dipartimento di Matematica, Università di Bari, via E. Orabona 4, 70125 Bari – Italy; Dipartimento di Scienze Economiche e Metodi Matematici, Facoltà di Economia, Università di Bari, via C. Rosalba 53, 70124 Bari – Italy},
author = {D’Abbicco, Marcello, Taglialatela, Giovanni},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Gevrey spaces},
language = {eng},
month = {1},
number = {2},
pages = {247-284},
publisher = {Université Paul Sabatier, Toulouse},
title = {Some results on the well-posedness for systems with time dependent coefficients},
url = {http://eudml.org/doc/10109},
volume = {18},
year = {2009},
}
TY - JOUR
AU - D’Abbicco, Marcello
AU - Taglialatela, Giovanni
TI - Some results on the well-posedness for systems with time dependent coefficients
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/1//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 2
SP - 247
EP - 284
AB - We consider hyperbolic systems with time dependent coefficients and size $2$ or $3$. We give some sufficient conditions in order the Cauchy Problem to be well-posed in ${\cal C}^\infty $ and in Gevrey spaces.
LA - eng
KW - Gevrey spaces
UR - http://eudml.org/doc/10109
ER -
References
top- Bronšteĭn (M. D.).— Smoothness of roots of polynomials depending on parameters, Siberian Math. J. 20 (1980) 347-352, translation from Sibirsk. Mat. Zh. 20 p. 493-501 (1979). Zbl0429.30007MR537355
- Colombini (F.).— Quelques remarques sur le problème de Cauchy pour des équations faiblement hyperboliques, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1992), École Polytech., Palaiseau, 1992, Exp. No. XIII. Zbl0779.35069MR1191920
- Colombini (F.), Ishida (H.), and Orrú (N.).— On the Cauchy problem for finitely degenerate hyperbolic equations of second order, Ark. Mat. 38, p. 223-230 (2000). Zbl1073.35145MR1785400
- Colombini (F.), Jannelli (E.) and Spagnolo (S.).— Well posedness in the Gevrey Classes of the Cauchy Problem for a Non Strictly Hyperbolic Equation with Coefficients Depending On Time, Ann. Scu. Norm. Sup. Pisa, 10, p. 291-312 (1983). Zbl0543.35056MR728438
- Colombini (F.) and Nishitani (T.).— Two by two strongly hyperbolic systems and Gevrey classes, Ann. Univ. Ferrara Sez. VII (N.S.) 45, suppl. (1999), p. 79-108 (2000). Zbl0993.35061MR1806490
- —.— Systèmes 2 fois 2 fortement hyperboliques dans et dans les classes de Gevrey, C. R. Acad. Sci. Paris Sér. I Math. 330, p. 969-972 (2000). Zbl0956.35076MR1779688
- Colombini (F.) and Orrú (N.).— Well-posedness in for some weakly hyperbolic equations, J. Math. Kyoto Univ. 39, p. 399-420 (1999). Zbl1007.35045MR1718730
- Colombini (F.) and Spagnolo (S.).— An example of a weakly hyperbolic Cauchy problem not well posed in , Acta Math. 148, p. 243-253 (1982). Zbl0517.35053MR666112
- Colombini (F.) and Taglialatela (G.).— Levi conditions for higher order operators with finite degeneracy, J. Math. Kyoto Univ. 46 (2006). Zbl1145.35079MR2320353
- D’Ancona (P.) and Kinoshita (T.).— On the wellposedness of the Cauchy problem for weakly hyperbolic equations of higher order, Math. Nach. 278, p. 1147-1162 (2005). Zbl1078.35065MR2155966
- D’Ancona (P.), Kinoshita (T.), and Spagnolo (S.).— Weakly hyperbolic systems with Hölder continuous coefficients, J. Differ. Equations 203, p. 64-81 (2004). Zbl1068.35065MR2070386
- —.— On the Well-Posedness of the Cauchy Problem for weakly hyperbolic systems, Osaka J. Math. 45, p. 921-939 (2008).
- D’Ancona (P.) and Racke (R.).— Weakly hyperbolic equations in domains with boundaries, Nonlinear Anal. 33, p. 455-472 (1998). Zbl0933.34067MR1635708
- D’Ancona (P.) and Spagnolo (S.).— On pseudosymmetric hyperbolic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), p. 397-418 (1998). Zbl1014.35055MR1655523
- —.— Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity, Boll. Unione Mat. Ital., Sez. B Artic Ric. Mat. (8) 1, p. 169-185 (1998). Zbl0916.35063MR1618976
- —.— A remark on uniformly symmetrizable systems, Adv. in Math. 158, p. 18-25 (2001). Zbl1195.35203MR1814897
- Demay (Y.).— Paramètrix pour des systèmes hyperboliques du premier ordre à multiplicité constante, J. Math. Pures Appl., IX. Sér. 56, p. 393-422 (1977). Zbl0379.35068MR466986
- Gårding (L.).— Linear hyperbolic partial differential equations with constant coefficients, Acta Math. 85, p. 1-62 (1951). Zbl0045.20202MR41336
- Ishida (H.) and Yagdjian (K.).— On a sharp Levi condition in Gevrey classes for some infinitely degenerate hyperbolic equations and its necessity, Publ. Res. Inst. Math. Sci. 38, no. 2, p. 265-287 (2002). Zbl1028.35089MR1903740
- Ivrii (V.Ja.).— Cauchy problem conditions for hyperbolic operators with characteristics of variable multiplicity for Gevrey classes, Sib. Math. J. 17, p. 921-931 (1977). Zbl0404.35068
- Kinoshita (T.) and Spagnolo (S.).— Hyperbolic equations with non analytic coefficients, Math. Ann. 336, p. 551-569 (2006). Zbl1103.35064MR2249759
- Larsson (E.).— Generalized hyperbolicity, Arkiv för Matematik 7, p. 11-32 (1967). Zbl0183.41302MR221062
- Mandai (T.).— Smoothness of roots of hyperbolic polynomials with respect to one-dimensional parameter, Bull. Fac. Gen. Ed. Gifu Univ. 21, p. 115-118 (1985). MR840968
- Matsumoto (W.).— On the condition for the hyperbolicity of systems with double characteristics roots. I and II, J. Math. Kyoto Univ. 21, p. 47-84, p. 251-271 (1981). Zbl0487.35057MR606312
- Mencherini (L.).— Il Problema di Cauchy per sistemi lineari di primo ordine debolmente iperbolici, Ph.D. Thesis, University of Pisa.
- Mencherini (L.) and Spagnolo (S.).— Gevrey well-posedness for pseudosymmetric systems with lower order terms, Hyperbolic differential operators and related problems (V. Ancona and J. Vaillant, eds.), Lecture Notes in Pure and Appl. Math., vol. 233, Marcel Dekker, New York, NY, (2003), p. 67-81. Zbl1058.35144MR2004859
- —.— Well-posedness of systems with -coefficients, Hyperbolic problems and related topics (F. Colombini and T. Nishitani, eds.), Grad. Ser. Anal, International Press, Somerville, MA, 2003, Proceedings of the conference, Cortona, Italy, September 10-14, (2002), p. 235-241. Zbl1054.35023MR2056853
- —.— Uniformly symmetrizable matrices, Linear Algebra Appl. 382, p. 25-38 (2004). Zbl1056.15012MR2050097
- Nishitani (T.).— Hyperbolicity of two by two systems with two independent variables, Comm. P.D.E. 23, p. 1061-1110 (1998). Zbl0913.35079MR1632796
- Orrù (N.).— On a weakly hyperbolic equation with a term of order zero, Annales de la Faculté des Sciences de Toulouse Sér. 6, 6, p. 525-534 (1997). Zbl0895.35057MR1610911
- Shinkai (K.) and Taniguchi (K.).— Fundamental solution for a degenerate hyperbolic operator in Gevrey classes, Publ. Res. Inst. Math. Sci. 28, p. 169-205 (1992). Zbl0820.35155MR1152755
- Spagnolo (S.).— On the Absolute Continuity of the Roots of Some Algebraic Equation, Ann.Univ.Ferrara, Suppl. XLV, p. 327-337 (1999). Zbl0993.30004MR1806507
- Tarama (S.).— On the second order hyperbolic equations degenerating in the infinite order. Example, Math. Japon. 42, p. 523-533 (1995). Zbl0837.35097MR1363842
- —.— Note on the Bronshtein theorem concerning hyperbolic polynomials, Sci. Math. Jpn. 63, p. 247-285 (2006). Zbl1106.26016MR2213130
- Wakabayashi (S.).— Remarks on hyperbolic polynomials, Tsukuba J. Math. 10, p. 17-28 (1986). Zbl0612.35005MR846411
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.