Relative determinants of elliptic operators and scattering theory

Werner Müller

Journées équations aux dérivées partielles (1996)

  • Volume: 1996, page 1-24
  • ISSN: 0752-0360

How to cite

top

Müller, Werner. "Relative determinants of elliptic operators and scattering theory." Journées équations aux dérivées partielles 1996 (1996): 1-24. <http://eudml.org/doc/93320>.

@article{Müller1996,
author = {Müller, Werner},
journal = {Journées équations aux dérivées partielles},
keywords = {zeta function of an operator; survey; relative determinants; elliptic operators; noncompact Riemannian manifolds},
language = {eng},
pages = {1-24},
publisher = {Ecole polytechnique},
title = {Relative determinants of elliptic operators and scattering theory},
url = {http://eudml.org/doc/93320},
volume = {1996},
year = {1996},
}

TY - JOUR
AU - Müller, Werner
TI - Relative determinants of elliptic operators and scattering theory
JO - Journées équations aux dérivées partielles
PY - 1996
PB - Ecole polytechnique
VL - 1996
SP - 1
EP - 24
LA - eng
KW - zeta function of an operator; survey; relative determinants; elliptic operators; noncompact Riemannian manifolds
UR - http://eudml.org/doc/93320
ER -

References

top
  1. [APS] M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Camb. Phil. Soc. 77 (1975), 43-69. Zbl0297.58008MR53 #1655a
  2. [BK] M.Sh. Birman and M.G. Krein, On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR 144 (1962), 475-478 ; English transl. in Soviet Math. Dokl. 3 (1962). Zbl0196.45004
  3. [Br] V. Bruneau, Propriétés asymptotiques du spectre continu d'opérateurs de Dirac, These de Doctorat, Université de Nantes, 1995. 
  4. [BY] M.Sh. Birman and M.G. Krein, The spectral shift function. The work of M.G. Krein and its further development, St. Petersburg Math. J. 4 (1993), 833-870. Zbl0791.47013
  5. [BC] J.-M. Bismut and J. Cheeger, Families index for manifolds with boundary, super connections, and cones, I, Journal Funct. Analysis 90 (1990), 306-354. Zbl0711.53023MR91e:58181
  6. [BF1] J.-M. Bismut and D.S. Freed, The analysis of elliptic families, I. Metrics and connections on determinant bundles, Commun. Math. Phys. 106 (1986), 159-176. Zbl0657.58037MR88h:58110a
  7. [BF2] J.-M. Bismut and D.S. Freed, The analysis of elliptic families, II, Commun. Math. Phys. 107 (1986), 103-163. Zbl0657.58038MR88h:58110b
  8. [BGS1] J.-M. Bismut, H. Gillet and C. Soulé, Analytic torsion and holomorphic determinant bundles, I. Bott-chern forms and analytic torsion, Commun. Math. Phys. 115 (1988), 49-78. Zbl0651.32017MR89g:58192a
  9. [BGS2] J.-M. Bismut, H. Gillet and C. Soulé, Analytic torsion and holomorphic determinant bundles, II. Direct images and Bott-Chern forms, Commun. Math. Phys. 115 (1988), 79-126. Zbl0651.32017MR89g:58192b
  10. [BGS3] J.-M. Bismut, H. Gillet and C. Soulé, Analytic torsion and holomorphic determinant bundles, III. Quillen metric on holomorphic determinants, Commun. Math. Phys. 115 (1988), 301-351. Zbl0651.32017MR89g:58192c
  11. [BL] J.-M. Bismut and G. Lebeau, Complex immersions and Quillen metrics, Publications Math. 74 (1991), 1-298. Zbl0784.32010MR94a:58205
  12. [BZ] J.-M. Bismut and W. Zhang, An extension of a theorem by Cheeger and Müller, Astérisque 205 (1992). Zbl0781.58039
  13. [BCY] T.P. Branson, S.-Y. A. Chang, and P.C. Yang, Estimates and extremals for zeta function determinants on four-manifolds, Commun. Math. Phys. 149 (1992), 241-262. Zbl0761.58053MR93m:58116
  14. [BFK] D. Burghelea, L. Friedlander, T. Kappeler, and P. McDonald, Analytic and Reidemeister torsion for representations in finite type Hilbert modules, Preprint, Ohio State University, 1996. Zbl0874.57025MR97i:58177
  15. [C] J. Cheeger, Analytic torsion and the heat equation, Annals of Math. 109 (1979), 259-322. Zbl0412.58026MR80j:58065a
  16. [CV1] Y. Colin de Verdiere, Une formule de traces pour l'opérateur de Schrödinger dans ℝ3, Ann. scient. Éc. Norm. Sup., 4e série, 14 (1981), 27-39. Zbl0482.35068MR82g:35088
  17. [CV2] Y. Colin de Verdiere, Pseudo-Laplaciens II, Ann. Inst. Fourier, Grenoble 33 (1983), 87-113. Zbl0496.58016MR84k:58222
  18. [De] C. Deninger, Local L-factors of motives and regularized determinants, Invent. math. 107 (1992), 135-151. Zbl0762.14015MR93a:11056
  19. [Do] S.K. Donaldson, Infinite determinants, stable bundles, and curvature, Duke Math. J. 54 (1987), 231-247. Zbl0627.53052MR88g:32046
  20. [Fa] G. Faltings, Lectures on the arithmetic Riemann-Roch theorem, Ann. Math. Studies 127 (1992). Zbl0744.14016MR93f:14006
  21. [Fr] D.S. Freed, Determinants, torsion, and strings. Commun. Math. Phys. 107 (1986), 483-513. Zbl0606.58013MR88b:58130
  22. [GMS] R.E. Gamboa Saravi, M.A. Muschietti, F.A. Schaposnik, and J.E. Solomin, ζ-function method and the evaluation of fermion currents, J. Math. Phys. 26 (1985), 2045-2049. MR87e:81137
  23. [GS] H. Gillet and Ch. Soullé, An arithmetic Riemann-Roch theorem, Invent. math. 110 (1992), 473-543. Zbl0777.14008MR94f:14019
  24. [Gu1] L. Guillopé, Une formule de trace pour l'opérateur de Schrödinger dans ℝn, These de 3eme cycle, Grenoble, 1981. 
  25. [Gu2] L. Guillopé, Asymptotique de la phase de diffusion pour l'opérateur de Schrödinger avec potentiel, C.R. Acad. Sci. Paris 293 (1981), 601-603. Zbl0487.35073MR83a:35079
  26. [H] S.W. Hawking, Zeta function regularization of path integrals in curved space time, Commun. Math. Phys. 55 (1977), 133-148. Zbl0407.58024MR58 #25823
  27. [He] D.A. Hejhal, The Selberg trace formula and the Riemann zeta function, Duke Math. J. 43 (1976), 441-482. Zbl0346.10010MR54 #2591
  28. [JK] A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J. 46 (1979), 583-611. Zbl0448.35080MR81b:35079
  29. [J] A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions, results in L2 (ℝm), m ≥ 5, Duke Math. J. 47 (1980), 57-80. Zbl0437.47009MR81e:35092
  30. [K] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1966. Zbl0148.12601MR34 #3324
  31. [KV] M. Kontsevich and S. Vishik, Determinants of elliptic pseudo-differential operators, MPI-Preprint Nr. 94-30, Bonn, 1994. 
  32. [Lo] J. Lott, Heat kernels on covering spaces and topological invariants, J. Diff. Geometry 35 (1992), 471-510. Zbl0770.58040MR93b:58140
  33. [Me] R.B. Melrose, The Atiyah-Patodi-Singer index theorem, A.K. Peters, Boston, 1993. Zbl0796.58050MR96g:58180
  34. [Mu1] W. Müller, Spectral theory for Riemannian manifolds with cusps and a related trace formula, Math. Nachrichten 111 (1983), 197-288. Zbl0529.58035MR85i:58121
  35. [Mu2] W. Müller, Spectral theory and scattering theory for certain complete surfaces of finite volume, Invent. math. 109 (1992), 265-305. Zbl0772.58063
  36. [Mu3] W. Müller, Analytic torsion and R-torsion of Riemannian manifolds, Adv. in Math. 28 (1978), 233-305. Zbl0395.57011MR80j:58065b
  37. [Mu4] W. Müller, Analytic torsion and R-torsion for unimodular representations, J. Amer. Math. Soc. 6 (1993), 721-753. Zbl0789.58071MR93m:58119
  38. [Mu5] W. Müller, Relative zeta functions, relative determinants, and scattering theory, in preparation. Zbl0947.58025
  39. [O] K. Okikiolu, The multiplicative anomaly for determinants of elliptic operators, Duke Math. J. 79 (1995), 723-750. Zbl0851.58048MR96j:58176
  40. [OPS1] B. Osgood, R. Phillips, and P. Sarnak, Extremals of determiants of Laplacians, J. Funct. Anal. 80 (1988), 148-211. Zbl0653.53022MR90d:58159
  41. [OPS2] B. Osgood, R. Phillips, and P. Sarnak, Compact isospectral sets of surfaces, J. Funct. Anal. 80 (1988), 212-234. Zbl0653.53021MR90d:58160
  42. [Pa] L.B. Parnovski, Spectral asymptotics of the Laplace operator on surfaces with cusps, Math. Annalen 303 (1995), 281-296. Zbl0849.35093MR97a:11080
  43. [Ro] D. Robert, Asymptotique a grande énergie de la phase de diffusion pour un potentiel, Asymptotic Analysis, 3 (1991), 301-320. Zbl0737.35054MR91m:35179
  44. [RS1] D.B. Ray and I.M. Singer, R-torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971), 145-210. Zbl0239.58014MR45 #4447
  45. [RS2] D.B. Ray and I.M. Singer, Analytic torsion for complex manifolds, Annals of Math. 98 (1973), 154-177. Zbl0267.32014MR52 #4344
  46. [Sa] P. Sarnak, Arithmetic quantum chaos, Israel Math. Conf. Proc. 8 (1995), 183-236. Zbl0831.58045MR96d:11059
  47. [S] R.T. Seeley, Complex powers of an elliptic operator, Proc. Symp. Pure Math. 10 (1967), 288-307. Zbl0159.15504MR38 #6220
  48. [Si] I.M. Singer, Families of Dirac operators with applications to physics, In : Élie Cartan et les Mathématiques d'aujourd'hui, Astérisque 1985, Numéro Hors Série. Zbl0603.58054MR88a:58192
  49. [Y] D.R. Yafaev, Mathematical scattering theory, Translations of Mathematical Monographs, Vol. 105 (1992), AMS. Zbl0761.47001MR94f:47012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.