Speed of convergence on the real axis of resonances

Nicolas Burq

Journées équations aux dérivées partielles (1996)

  • Volume: 1996, page 1-9
  • ISSN: 0752-0360

How to cite

top

Burq, Nicolas. "Vitesse de convergence vers le réel des résonances." Journées équations aux dérivées partielles 1996 (1996): 1-9. <http://eudml.org/doc/93332>.

@article{Burq1996,
author = {Burq, Nicolas},
journal = {Journées équations aux dérivées partielles},
keywords = {compact obstacle; outgoing resolvent},
language = {fre},
pages = {1-9},
publisher = {Ecole polytechnique},
title = {Vitesse de convergence vers le réel des résonances},
url = {http://eudml.org/doc/93332},
volume = {1996},
year = {1996},
}

TY - JOUR
AU - Burq, Nicolas
TI - Vitesse de convergence vers le réel des résonances
JO - Journées équations aux dérivées partielles
PY - 1996
PB - Ecole polytechnique
VL - 1996
SP - 1
EP - 9
LA - fre
KW - compact obstacle; outgoing resolvent
UR - http://eudml.org/doc/93332
ER -

References

top
  1. [1] C. Gérard. Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes. Supplément au Bulletin de la Société Mathématique de France, 116, 1988. Zbl0654.35081
  2. [2] M. Ikawa. Decay of solution of the wave equation in the exterior of several convex bodies. Annales de l'Institut Fourier, 38(2):113-146, 1982. Zbl0636.35045MR90a:35028
  3. [3] M. Ikawa. Decay of solution of the wave equation in the exterior of two convex bodies. Osaka Journal of Mathematics, 19:459-509, 1982. Zbl0498.35008MR84e:35018
  4. [4] M. Ikawa. Trapping obstacles with a sequence of pôles converging to the real axis. Osaka Journal of Mathematics, 22:657-689, 1985. Zbl0617.35102MR87d:35107
  5. [5] M. Ikawa. On the poles of the scattering matrix for two convex obstacles. Annales de l'Institut Fourier, 38:113-146, 1988. 
  6. [6] P. D. Lax and R. S. Phillips. The acoustic equation with an indefinite energy form and the schrödinger equation. J. Funct. Analysis, 1:37-83, 1967. Zbl0186.16401MR36 #531
  7. [7] P. D. Lax and R. S. Phillips. Scattering theory. Number 26 in Pure and Applied Mathematics. Academic Press, 2 edition, 1989. Zbl0697.35004MR90k:35005
  8. [8] G. Lebeau. Equation des ondes amorties. A paraître à Algebraic and Geometric Methods in Mathematical Physics. Math-Physics Book Series Kluwer's. Zbl0863.58068
  9. [9] G. Lebeau and L. Robbiano. Contrôle exact de l'équation de la chaleur. Communications in Partial Differential Equation, 20:335-356, 1995. Zbl0819.35071MR95m:93045
  10. [10] G. Lebeau and L. Robbiano. Stabilisation de l'équation des ondes par le bord. Prépublications de l'université de Paris-Sud, 95-40, 1995. 
  11. [11] R.B. Melrose and J. Sjöstrand. Singularities of boundary value problems I. Communications in Pure Applied Mathematics, 35, 1982. Zbl0546.35083
  12. [12] C. S. Morawetz, J. V. Ralston, and W. Strauss. Decay of solutions of the wave equation outside non-trapping obstacles. Communications in Pure and Applied Mathematics, 30:447-508, 1977. Zbl0372.35008MR58 #23091a
  13. [13] J. V. Ralston. Solutions of the wave equation with localized energy. Comm. in Pure and Applied Mathematics, 22:807-823, 1969. Zbl0209.40402MR40 #7642
  14. [14] J. V. Ralston. Trapped rays in spherically symmetric media and poles of the scattering matrix. Comm. in Pure and Applied Mathematics, XXIV:571-582, 1971. Zbl0206.39603MR56 #16166
  15. [15] H. F. Walker. Some remarks on the local energy decay of solution of the initial-boundary value problem for the wave equation in unbounded domains. Journal of Differential Equations, 23:459-471, 1977. Zbl0337.35046MR55 #827
  16. [16] G. N. Watson. Theory of Bessel functions. Cambridge University Press, second edition, 1944. Zbl0063.08184MR6,64a

NotesEmbed ?

top

You must be logged in to post comments.