Speed of convergence on the real axis of resonances

Nicolas Burq

Journées équations aux dérivées partielles (1996)

  • Volume: 1996, page 1-9
  • ISSN: 0752-0360

How to cite

top

Burq, Nicolas. "Vitesse de convergence vers le réel des résonances." Journées équations aux dérivées partielles 1996 (1996): 1-9. <http://eudml.org/doc/93332>.

@article{Burq1996,
author = {Burq, Nicolas},
journal = {Journées équations aux dérivées partielles},
keywords = {compact obstacle; outgoing resolvent},
language = {fre},
pages = {1-9},
publisher = {Ecole polytechnique},
title = {Vitesse de convergence vers le réel des résonances},
url = {http://eudml.org/doc/93332},
volume = {1996},
year = {1996},
}

TY - JOUR
AU - Burq, Nicolas
TI - Vitesse de convergence vers le réel des résonances
JO - Journées équations aux dérivées partielles
PY - 1996
PB - Ecole polytechnique
VL - 1996
SP - 1
EP - 9
LA - fre
KW - compact obstacle; outgoing resolvent
UR - http://eudml.org/doc/93332
ER -

References

top
  1. [1] C. Gérard. Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes. Supplément au Bulletin de la Société Mathématique de France, 116, 1988. Zbl0654.35081
  2. [2] M. Ikawa. Decay of solution of the wave equation in the exterior of several convex bodies. Annales de l'Institut Fourier, 38(2):113-146, 1982. Zbl0636.35045MR90a:35028
  3. [3] M. Ikawa. Decay of solution of the wave equation in the exterior of two convex bodies. Osaka Journal of Mathematics, 19:459-509, 1982. Zbl0498.35008MR84e:35018
  4. [4] M. Ikawa. Trapping obstacles with a sequence of pôles converging to the real axis. Osaka Journal of Mathematics, 22:657-689, 1985. Zbl0617.35102MR87d:35107
  5. [5] M. Ikawa. On the poles of the scattering matrix for two convex obstacles. Annales de l'Institut Fourier, 38:113-146, 1988. 
  6. [6] P. D. Lax and R. S. Phillips. The acoustic equation with an indefinite energy form and the schrödinger equation. J. Funct. Analysis, 1:37-83, 1967. Zbl0186.16401MR36 #531
  7. [7] P. D. Lax and R. S. Phillips. Scattering theory. Number 26 in Pure and Applied Mathematics. Academic Press, 2 edition, 1989. Zbl0697.35004MR90k:35005
  8. [8] G. Lebeau. Equation des ondes amorties. A paraître à Algebraic and Geometric Methods in Mathematical Physics. Math-Physics Book Series Kluwer's. Zbl0863.58068
  9. [9] G. Lebeau and L. Robbiano. Contrôle exact de l'équation de la chaleur. Communications in Partial Differential Equation, 20:335-356, 1995. Zbl0819.35071MR95m:93045
  10. [10] G. Lebeau and L. Robbiano. Stabilisation de l'équation des ondes par le bord. Prépublications de l'université de Paris-Sud, 95-40, 1995. 
  11. [11] R.B. Melrose and J. Sjöstrand. Singularities of boundary value problems I. Communications in Pure Applied Mathematics, 35, 1982. Zbl0546.35083
  12. [12] C. S. Morawetz, J. V. Ralston, and W. Strauss. Decay of solutions of the wave equation outside non-trapping obstacles. Communications in Pure and Applied Mathematics, 30:447-508, 1977. Zbl0372.35008MR58 #23091a
  13. [13] J. V. Ralston. Solutions of the wave equation with localized energy. Comm. in Pure and Applied Mathematics, 22:807-823, 1969. Zbl0209.40402MR40 #7642
  14. [14] J. V. Ralston. Trapped rays in spherically symmetric media and poles of the scattering matrix. Comm. in Pure and Applied Mathematics, XXIV:571-582, 1971. Zbl0206.39603MR56 #16166
  15. [15] H. F. Walker. Some remarks on the local energy decay of solution of the initial-boundary value problem for the wave equation in unbounded domains. Journal of Differential Equations, 23:459-471, 1977. Zbl0337.35046MR55 #827
  16. [16] G. N. Watson. Theory of Bessel functions. Cambridge University Press, second edition, 1944. Zbl0063.08184MR6,64a

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.