Un cas limite de lemmes de compacité en moyenne motivé par la formulation cinétique de systèmes hyperboliques
Journées équations aux dérivées partielles (1997)
- page 1-7
- ISSN: 0752-0360
Access Full Article
topHow to cite
topPerthame, Benoît. "Un cas limite de lemmes de compacité en moyenne motivé par la formulation cinétique de systèmes hyperboliques." Journées équations aux dérivées partielles (1997): 1-7. <http://eudml.org/doc/93337>.
@article{Perthame1997,
author = {Perthame, Benoît},
journal = {Journées équations aux dérivées partielles},
keywords = {transport equations with space derivative; kinetic formulation of isentropic gas dynamics; conservation laws; averaging lemmas},
language = {fre},
pages = {1-7},
publisher = {Ecole polytechnique},
title = {Un cas limite de lemmes de compacité en moyenne motivé par la formulation cinétique de systèmes hyperboliques},
url = {http://eudml.org/doc/93337},
year = {1997},
}
TY - JOUR
AU - Perthame, Benoît
TI - Un cas limite de lemmes de compacité en moyenne motivé par la formulation cinétique de systèmes hyperboliques
JO - Journées équations aux dérivées partielles
PY - 1997
PB - Ecole polytechnique
SP - 1
EP - 7
LA - fre
KW - transport equations with space derivative; kinetic formulation of isentropic gas dynamics; conservation laws; averaging lemmas
UR - http://eudml.org/doc/93337
ER -
References
top- [Ag] V. I. Agoshkov, Spaces of functions with differential-difference characteristics and smoothness of solutions of the transport equation. Soviet Math. Dokl. 29 (1984), 662-666. Zbl0599.35009MR86a:46033
- [Bu] T.F. Buttke, Velicity methods : Lagrangian numerical methods which preserve the Hamiltonian structure of incompressible fluid flows. In Vortex flow and related numerical methods ed. J. T. Beale, G. H. Cottet and S. Huberson (Dordrecht : Kluwer) (1993). Zbl0860.76064MR94m:76093
- [Bd1] D. Benedetto, Convergence of velicity blobs method for the Euler Equation. Math. Methods Appl. Sc., vol. 19 (1986) 463-479. Zbl0992.76073MR97i:76035
- [Bd2] D. Benedetto, A remark on the Hamiltonian structure of the incompresible flows. J. stat. Phys. 79 (1997). Zbl1081.76532
- [Bz] M. Bézard, Régularité précisée des moyennes dans les équations de transport, Bull. Soc. Math. France 22 (1994), 29-76. Zbl0798.35025MR95g:82083
- [BC] Y. Brenier, L. Corrias. A kinetic formulation for multibranch entropy solutions of scalar conservation laws. Ann. Inst. H. Poincaré analyse non-linéaire. Zbl0893.35068
- [D1] R. Di Perna, Convergence of the viscosity method for Isentropic Gas Dynamics, Comm. Math. Phys. 91 (1983), 1-30. Zbl0533.76071MR85i:35118
- [DiL1] R. J. DiPerna and P.-L. Lions, On the Cauchy problem for the Boltzmann Equation : global existence and weak stability results, Ann. Math. 130 (1989), 321-366. Zbl0698.45010MR90k:82045
- [DiL2] R. J. DiPerna and P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math. 42 (1989), 729-757. Zbl0698.35128MR90i:35236
- [DiLM] R. J. DiPerna, P.-L. Lions and Y. Meyer, Lp regularity of velocity averages, Ann. Inst. H. Poincaré Ann. Non Linéaire 8 (1991), 271-287. Zbl0763.35014MR92g:35036
- [Ge] P. Gérard, Moyennisation et régularité deux-microlocale, Ann. Sci. Ecole Normale Sup. 4 (1990), 89-121. Zbl0725.35003MR91g:35068
- [GPS] F. Golse, B. Perthame and R. Sentis. Un résultat de compacité pour les équations du transport ..., C. R. Acad. Sci. Paris Série I 301 (1985), 341-344. Zbl0591.45007MR86m:82062
- [GLPS] F. Golse, P.-L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal., 76 (1988), 110-125. Zbl0652.47031MR89a:35179
- [HLP] H. Herero, B. Lucquin and B. Perthame. On the motion of dispersed balls in a potential flow. Raport LAN (1987).
- [K] G.A. Kuz'min, Ideal incompressible hydrodynamics in terms of the vortex mementum density. Phys. Lett. 96A (1983), 88.
- [L] P.-L. Lions, Régularité optimale des moyennes en vitesses. C. R. Acad. Sci. Paris, t. 320 Série I (1995), 911-915. Zbl0827.35110MR96c:35184
- [LPS] P.L. Lions, B. Perthame, P.E. Souganidis. Existence of entropy solutions to isentropic gas dynamics system. C.P.A.M. Vol. 49, 599-638 (1996). Zbl0853.76077MR97e:35107
- [LPT1] P. L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. of AMS 7 (1994), 169-191. Zbl0820.35094MR94d:35100
- [LPT2] P. L. Lions, B. Perthame, E. Tadmor. Formulation cinétique des lois de conservation scalaires. C.R. Acad. Sc. Paris, t. 312 Série I (1991). Zbl0729.49007MR91k:35156
- [MP] J. H. Maddocks and R.L. Pego, An unconstrained Hamiltonian formulation for incompressible fluid flow. Comm. Math. Phys. 170 (1995) 207. Zbl0824.76021MR96a:76085
- [M] F. Murat, Compacité par compensation, Ann. Sc. Norm. Sup. Pisa 5 (1978), 489-507. Zbl0399.46022MR80h:46043a
- [O] V.I. Oseledets. On a new way of writing the Navier-Stokes equation : the Hamiltonian formalism. Comm. Moscow Math. Soc. (1988) ; translated in Russ. Math. Surveys 44 (1989), 210-211. Zbl0850.76130
- [PS] B. Perthame et P. E. Souganidis. A limiting case of averaging lemmas. Rapport LAN (1987).
- [RS] G. Russo and P. Smereka. Kinetic theory for bubbly flow I : collisionless case. SIAM J. Appl. Math., Vol. 56, n°2, 327-357 (1996). Zbl0857.76090MR97f:82042
- [Se] D. SerreSystemes hyperboliques de lois de conservation, Parties I et II. Diderot, Paris (1996). Zbl0930.35002MR99b:35139
- [Sm] P. Smereka. A Vlasov description of the Euler equation. Nonlinearity 9 (1996), 1361-1386. Zbl0926.76023MR97h:76029
- [Sp] H. Spohn. Large scale dynamics of interacting particles. Springer-Verlag, Berlin (1991). Zbl0742.76002
- [St] E. M. Stein. Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton (1970). Zbl0207.13501MR44 #7280
- [Ta] L. Tartar, Compensated compactness and applications to partial differential equations, in Research Notes in Mathematics, Nonlinear Analysis and Mechanics : Herriot-Watt Symposium Vol. 4, ed. R.J. Knops, Pitman Press (1979). Zbl0437.35004MR81m:35014
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.