The FBI transform, operators with nonsmooth coefficients and the nonlinear wave equation
Journées équations aux dérivées partielles (1999)
- page 1-16
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topTataru, Daniel. "The FBI transform, operators with nonsmooth coefficients and the nonlinear wave equation." Journées équations aux dérivées partielles (1999): 1-16. <http://eudml.org/doc/93371>.
@article{Tataru1999,
abstract = {The aim of this work is threefold. First we set up a calculus for partial differential operators with nonsmooth coefficients which is based on the FBI (Fourier-Bros-Iagolnitzer) transform. Then, using this calculus, we prove a weaker version of the Strichartz estimates for second order hyperbolic equations with nonsmooth coefficients. Finally, we apply these new Strichartz estimates to second order nonlinear hyperbolic equations and improve the local theory, i.e. prove local well-posedness for initial data which is less regular than the classical threshold.},
author = {Tataru, Daniel},
journal = {Journées équations aux dérivées partielles},
keywords = {Fourier-Bros-Iagolnitzer transform; Strichartz estimates; well-posedness},
language = {eng},
pages = {1-16},
publisher = {Université de Nantes},
title = {The FBI transform, operators with nonsmooth coefficients and the nonlinear wave equation},
url = {http://eudml.org/doc/93371},
year = {1999},
}
TY - JOUR
AU - Tataru, Daniel
TI - The FBI transform, operators with nonsmooth coefficients and the nonlinear wave equation
JO - Journées équations aux dérivées partielles
PY - 1999
PB - Université de Nantes
SP - 1
EP - 16
AB - The aim of this work is threefold. First we set up a calculus for partial differential operators with nonsmooth coefficients which is based on the FBI (Fourier-Bros-Iagolnitzer) transform. Then, using this calculus, we prove a weaker version of the Strichartz estimates for second order hyperbolic equations with nonsmooth coefficients. Finally, we apply these new Strichartz estimates to second order nonlinear hyperbolic equations and improve the local theory, i.e. prove local well-posedness for initial data which is less regular than the classical threshold.
LA - eng
KW - Fourier-Bros-Iagolnitzer transform; Strichartz estimates; well-posedness
UR - http://eudml.org/doc/93371
ER -
References
top- [1] Hajer Bahouri and Jean-Yves Chemin. Equations d'ondes quasilineaires et effet dispersif. preprint.
- [2] Hajer Bahouri and Jean-Yves Chemin. Equations d'ondes quasilineaires et estimations de strichartz. preprint.
- [3] Philip Brenner. On Lp — Lp' estimates for the wave-equation. Math. Z., 145(3):251-254, 1975. Zbl0321.35052
- [4] J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equation. J. Funct. Anal., 133(1):50-68, 1995. Zbl0849.35064MR97a:46047
- [5] Thomas J. R. Hughes, Tosio Kato, and Jerrold E. Marsden. Well-posed quasilinear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Rational Mech. Anal., 63(3):273-294 (1977), 1976. Zbl0361.35046
- [6] Markus Keel and Terence Tao. Endpoint Strichartz estimates. Amer. J. Math., 120(5):955-980, 1998. Zbl0922.35028MR2000d:35018
- [7] Hans Lindblad. Counterexamples to local existence for semi-linear wave equations. Amer. J. Math., 118(1):1-16, 1996. Zbl0855.35080MR97b:35124
- [8] Hans Lindblad. Counterexamples to local existence for quasilinear wave equations. Math. Res. Lett., 5(5):605-622, 1998. Zbl0932.35149MR2000a:35171
- [9] Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge. Local smoothing of Fourier integral operators and Carleson-Sjölin estimates. J. Amer. Math. Soc., 6(1):65-130, 1993. Zbl0776.58037
- [10] Johannes Sjöstrand. Singularités analytiques microlocales. In Astérisque, 95, pages 1-166. Soc. Math. France, Paris, 1982. Zbl0524.35007MR84m:58151
- [11] Johannes Sjöstrand. Function spaces associated to global I-Lagrangian manifolds. In Structure of solutions of differential equations (Katata/Kyoto, 1995), pages 369-423. World Sci. Publishing, River Edge, NJ, 1996. Zbl0889.46027
- [12] Hart F. Smith. A parametrix construction for wave equations with C1,1 coefficients. Ann. Inst. Fourier (Grenoble), 48(3):797-835, 1998. Zbl0974.35068
- [13] Hart F. Smith and Christopher D. Sogge. On Strichartz and eigenfunction estimates for low regularity metrics. Math. Res. Lett., 1(6):729-737, 1994. Zbl0832.35018MR95h:35156
- [14] Robert S. Strichartz. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44(3):705-714, 1977. Zbl0372.35001MR58 #23577
- [15] Daniel Tataru. On the equation ∇u = |⎕u|2 in 5 + 1 dimensions. preprint, http://www.math.nwu/tataru/nlw. Zbl0949.35093
- [16] Daniel Tataru. Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. preprint, http://www.math.nwu/tataru/nlw. Zbl0959.35125
- [17] Daniel Tataru. Strichartz estimates for operators with nonsmooth coefficients iii. preprint, http://www.math.nwu/tataru/nlw. Zbl0990.35027
- [18] Daniel Tataru. Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients ii. preprint, http://www.math.nwu/tataru/nlw. Zbl0988.35037
- [19] Michael E. Taylor. Pseudodifferential operators and nonlinear PDE. Birkhäuser Boston Inc., Boston, MA, 1991. Zbl0746.35062
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.