The FBI transform, operators with nonsmooth coefficients and the nonlinear wave equation

Daniel Tataru

Journées équations aux dérivées partielles (1999)

  • page 1-16
  • ISSN: 0752-0360

Abstract

top
The aim of this work is threefold. First we set up a calculus for partial differential operators with nonsmooth coefficients which is based on the FBI (Fourier-Bros-Iagolnitzer) transform. Then, using this calculus, we prove a weaker version of the Strichartz estimates for second order hyperbolic equations with nonsmooth coefficients. Finally, we apply these new Strichartz estimates to second order nonlinear hyperbolic equations and improve the local theory, i.e. prove local well-posedness for initial data which is less regular than the classical threshold.

How to cite

top

Tataru, Daniel. "The FBI transform, operators with nonsmooth coefficients and the nonlinear wave equation." Journées équations aux dérivées partielles (1999): 1-16. <http://eudml.org/doc/93371>.

@article{Tataru1999,
abstract = {The aim of this work is threefold. First we set up a calculus for partial differential operators with nonsmooth coefficients which is based on the FBI (Fourier-Bros-Iagolnitzer) transform. Then, using this calculus, we prove a weaker version of the Strichartz estimates for second order hyperbolic equations with nonsmooth coefficients. Finally, we apply these new Strichartz estimates to second order nonlinear hyperbolic equations and improve the local theory, i.e. prove local well-posedness for initial data which is less regular than the classical threshold.},
author = {Tataru, Daniel},
journal = {Journées équations aux dérivées partielles},
keywords = {Fourier-Bros-Iagolnitzer transform; Strichartz estimates; well-posedness},
language = {eng},
pages = {1-16},
publisher = {Université de Nantes},
title = {The FBI transform, operators with nonsmooth coefficients and the nonlinear wave equation},
url = {http://eudml.org/doc/93371},
year = {1999},
}

TY - JOUR
AU - Tataru, Daniel
TI - The FBI transform, operators with nonsmooth coefficients and the nonlinear wave equation
JO - Journées équations aux dérivées partielles
PY - 1999
PB - Université de Nantes
SP - 1
EP - 16
AB - The aim of this work is threefold. First we set up a calculus for partial differential operators with nonsmooth coefficients which is based on the FBI (Fourier-Bros-Iagolnitzer) transform. Then, using this calculus, we prove a weaker version of the Strichartz estimates for second order hyperbolic equations with nonsmooth coefficients. Finally, we apply these new Strichartz estimates to second order nonlinear hyperbolic equations and improve the local theory, i.e. prove local well-posedness for initial data which is less regular than the classical threshold.
LA - eng
KW - Fourier-Bros-Iagolnitzer transform; Strichartz estimates; well-posedness
UR - http://eudml.org/doc/93371
ER -

References

top
  1. [1] Hajer Bahouri and Jean-Yves Chemin. Equations d'ondes quasilineaires et effet dispersif. preprint. 
  2. [2] Hajer Bahouri and Jean-Yves Chemin. Equations d'ondes quasilineaires et estimations de strichartz. preprint. 
  3. [3] Philip Brenner. On Lp — Lp' estimates for the wave-equation. Math. Z., 145(3):251-254, 1975. Zbl0321.35052
  4. [4] J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equation. J. Funct. Anal., 133(1):50-68, 1995. Zbl0849.35064MR97a:46047
  5. [5] Thomas J. R. Hughes, Tosio Kato, and Jerrold E. Marsden. Well-posed quasilinear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Rational Mech. Anal., 63(3):273-294 (1977), 1976. Zbl0361.35046
  6. [6] Markus Keel and Terence Tao. Endpoint Strichartz estimates. Amer. J. Math., 120(5):955-980, 1998. Zbl0922.35028MR2000d:35018
  7. [7] Hans Lindblad. Counterexamples to local existence for semi-linear wave equations. Amer. J. Math., 118(1):1-16, 1996. Zbl0855.35080MR97b:35124
  8. [8] Hans Lindblad. Counterexamples to local existence for quasilinear wave equations. Math. Res. Lett., 5(5):605-622, 1998. Zbl0932.35149MR2000a:35171
  9. [9] Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge. Local smoothing of Fourier integral operators and Carleson-Sjölin estimates. J. Amer. Math. Soc., 6(1):65-130, 1993. Zbl0776.58037
  10. [10] Johannes Sjöstrand. Singularités analytiques microlocales. In Astérisque, 95, pages 1-166. Soc. Math. France, Paris, 1982. Zbl0524.35007MR84m:58151
  11. [11] Johannes Sjöstrand. Function spaces associated to global I-Lagrangian manifolds. In Structure of solutions of differential equations (Katata/Kyoto, 1995), pages 369-423. World Sci. Publishing, River Edge, NJ, 1996. Zbl0889.46027
  12. [12] Hart F. Smith. A parametrix construction for wave equations with C1,1 coefficients. Ann. Inst. Fourier (Grenoble), 48(3):797-835, 1998. Zbl0974.35068
  13. [13] Hart F. Smith and Christopher D. Sogge. On Strichartz and eigenfunction estimates for low regularity metrics. Math. Res. Lett., 1(6):729-737, 1994. Zbl0832.35018MR95h:35156
  14. [14] Robert S. Strichartz. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44(3):705-714, 1977. Zbl0372.35001MR58 #23577
  15. [15] Daniel Tataru. On the equation ∇u = |⎕u|2 in 5 + 1 dimensions. preprint, http://www.math.nwu/tataru/nlw. Zbl0949.35093
  16. [16] Daniel Tataru. Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. preprint, http://www.math.nwu/tataru/nlw. Zbl0959.35125
  17. [17] Daniel Tataru. Strichartz estimates for operators with nonsmooth coefficients iii. preprint, http://www.math.nwu/tataru/nlw. Zbl0990.35027
  18. [18] Daniel Tataru. Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients ii. preprint, http://www.math.nwu/tataru/nlw. Zbl0988.35037
  19. [19] Michael E. Taylor. Pseudodifferential operators and nonlinear PDE. Birkhäuser Boston Inc., Boston, MA, 1991. Zbl0746.35062

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.