Long range scattering and modified wave operators for Hartree equations
Journées équations aux dérivées partielles (1999)
- page 1-9
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topGinibre, Jean, and Velo, Giorgio. "Long range scattering and modified wave operators for Hartree equations." Journées équations aux dérivées partielles (1999): 1-9. <http://eudml.org/doc/93374>.
@article{Ginibre1999,
abstract = {We study the theory of scattering for the Hartree equation with long range potentials. We prove the existence of modified wave operators with no size restriction on the data and we determine the asymptotic behaviour in time of solutions in the range of the wave operators.},
author = {Ginibre, Jean, Velo, Giorgio},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-9},
publisher = {Université de Nantes},
title = {Long range scattering and modified wave operators for Hartree equations},
url = {http://eudml.org/doc/93374},
year = {1999},
}
TY - JOUR
AU - Ginibre, Jean
AU - Velo, Giorgio
TI - Long range scattering and modified wave operators for Hartree equations
JO - Journées équations aux dérivées partielles
PY - 1999
PB - Université de Nantes
SP - 1
EP - 9
AB - We study the theory of scattering for the Hartree equation with long range potentials. We prove the existence of modified wave operators with no size restriction on the data and we determine the asymptotic behaviour in time of solutions in the range of the wave operators.
LA - eng
UR - http://eudml.org/doc/93374
ER -
References
top- [1] T. Cazenave, An introduction to nonlinear Schrödinger equations, Text. Met. Mat. 26, Inst. Mat., Rio de Janeiro (1993).
- [2] J. Derezinski, C. Gérard, Scattering Theory of Classical and Quantum N-Particle Systems, Springer, Berlin, 1997. Zbl0899.47007MR99d:81172
- [3] J. Ginibre, T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension n ≥ 2, Commun. Math. Phys. 151 (1993), 619-645. Zbl0776.35070MR93m:35168
- [4] J. Ginibre, G. Velo, On a class of nonlinear Schrödinger equations with non-local interaction, Math. Z. 170 (1980), 109-136. Zbl0407.35063MR82c:35018
- [5] J. Ginibre, G. Velo, Long range scattering and modified wave operators for some Hartree type equations I, Rev. Math. Phys., to appear. Zbl1044.35041
- [6] J. Ginibre, G. Velo, Long range scattering and modified wave operators for some Hartree type equations II, Preprint, Orsay 1999. Zbl1067.35501
- [7] N. Hayashi, P. I. Naumkin, Scattering theory and large time asymptotics of solutions to Hartree type equations with a long range potential, Preprint, 1997. Zbl0937.35167
- [8] N. Hayashi, P. I. Naumkin, Remarks on scattering theory and large time asymptotics of solutions to Hartree type equations with a long range potential, SUT J. of Math. 34 (1998), 13-24. Zbl0937.35167MR99i:35147
- [9] N. Hayashi, Y. Tsutsumi, Scattering theory for Hartree type equations, Ann. IHP (Phys. Théor.) 46 (1987), 187-213. Zbl0634.35059MR89a:81158
- [10] L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. IV, Springer, Berlin, 1985. Zbl0601.35001
- [11] H. Nawa, T. Ozawa, Nonlinear scattering with nonlocal interaction, Commun. Math. Phys. 146 (1992), 259-275. Zbl0748.35046MR93f:35170
- [12] T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Commun. Math. Phys. 139 (1991), 479-493. Zbl0742.35043MR92j:35172
- [13] D.R. Yafaev, Wave operators for the Schrödinger equation, Theor. Mat. Phys. 45 (1980), 992-998. Zbl0467.35076MR82j:35119
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.