Supersymmetry, Witten complex and asymptotics for directional Lyapunov exponents in 𝐙 d

Wei-Min Wang

Journées équations aux dérivées partielles (1999)

  • page 1-16
  • ISSN: 0752-0360

Abstract

top
By using a supersymmetric gaussian representation, we transform the averaged Green's function for random walks in random potentials into a 2-point correlation function of a corresponding lattice field theory. We study the resulting lattice field theory using the Witten laplacian formulation. We obtain the asymptotics for the directional Lyapunov exponents.

How to cite

top

Wang, Wei-Min. "Supersymmetry, Witten complex and asymptotics for directional Lyapunov exponents in $\mathbf {Z}^d$." Journées équations aux dérivées partielles (1999): 1-16. <http://eudml.org/doc/93375>.

@article{Wang1999,
abstract = {By using a supersymmetric gaussian representation, we transform the averaged Green's function for random walks in random potentials into a 2-point correlation function of a corresponding lattice field theory. We study the resulting lattice field theory using the Witten laplacian formulation. We obtain the asymptotics for the directional Lyapunov exponents.},
author = {Wang, Wei-Min},
journal = {Journées équations aux dérivées partielles},
keywords = {random walk; random potential; supersymmetry; Witten Laplacian},
language = {eng},
pages = {1-16},
publisher = {Université de Nantes},
title = {Supersymmetry, Witten complex and asymptotics for directional Lyapunov exponents in $\mathbf \{Z\}^d$},
url = {http://eudml.org/doc/93375},
year = {1999},
}

TY - JOUR
AU - Wang, Wei-Min
TI - Supersymmetry, Witten complex and asymptotics for directional Lyapunov exponents in $\mathbf {Z}^d$
JO - Journées équations aux dérivées partielles
PY - 1999
PB - Université de Nantes
SP - 1
EP - 16
AB - By using a supersymmetric gaussian representation, we transform the averaged Green's function for random walks in random potentials into a 2-point correlation function of a corresponding lattice field theory. We study the resulting lattice field theory using the Witten laplacian formulation. We obtain the asymptotics for the directional Lyapunov exponents.
LA - eng
KW - random walk; random potential; supersymmetry; Witten Laplacian
UR - http://eudml.org/doc/93375
ER -

References

top
  1. [BJS] V. BACH, T. JECKO AND J. SJÖSTRAND, Correlation asymptotics of classical lattice spin systems with nonconvex Hamilton function at low temperature, Preprint, 1998. Zbl1021.82002
  2. [Be] F. A. BEREZIN, The Method of Second Quantization, 1966, Academic Press, New York. Zbl0151.44001MR34 #8738
  3. [BGV] N. BERLINE, E. GETZLER AND M. VERGNE, Heat kernels and Dirac operators, Springer-Verlag, 1992. Zbl0744.58001MR94e:58130
  4. [BCKP] A. BOVIER, M. CAMPANINO, A. KLEIN, AND F. PEREZ, Smoothness of the density of states in the Anderson model at high disorder, 1988 114, 439-461, Commun. Math. Phys. Zbl0644.60057MR89c:82050
  5. [BF1] J. BRICMONT, J. FRÖHLICH, Statistical mechanics methods in particle structure analysis of lattice field theory [I] General theory, 1985 251 [FS13], 517-552, Nuclear Phys. B. Zbl1223.81146
  6. [BF2] J. BRICMONT, J. FRÖHLICH, Statistical mechanics methods in particle structure analysis of lattice field theory [II] Scalar and surface models, 1985 98, 553-578, Commun. Math. Phys. Zbl1223.82010
  7. [CC] J. T. CHAYES AND L. CHAYES, Ornstein-Zernike behavior for self-Avoiding walks at all noncritical temperature, 1986 105, Commun. Math. Phys., 221-238. MR87k:82008
  8. [CFKS] H. L. CYCON, R. G. FROESE, W. KIRSCH AND B. SIMON, Schrödinger Operators, Springer-Verlag, 1987. Zbl0619.47005
  9. [EW1] J.-P ECKMANN AND E. C. WAYNE, Liapunov spectra for infinite chaines of non-linear oscillators, J. Stat. Phys. 50, 853-878, 1987. Zbl1084.37500
  10. [EW2] J.-P ECKMANN AND E. C. WAYNE, The largest Liapunov exponent for random matrices and directed polymers in a random environment, Commun. Math. Phys. 121, 147-175, 1989. Zbl0673.60066MR90h:60097
  11. [Ef] K. B. EFFETOV, Supersymmetry and the theory of disordered metals, Adv. Phys. 32, 1983, 53-127. MR85b:82014
  12. [F] W. FELLER, An Introduction to Probability Theory and Its Applications, 1966, John-Wiley and Sons. Zbl0138.10207MR35 #1048
  13. [FFS] R. FERNANDEZ, J. FRÖHLICH, A. SOKAL, Random Walks, Critical phenomena and Triviality in Quantum Field Theory, 1992, Springer-Verlag. Zbl0761.60061
  14. [FKG] C. M. FORTUIN, P. W. KASTELEYN, J. GINIBRE, Correlation inequalities on some partially ordered sets, Commun. Math. Phys., 89-103 22, 1971. Zbl0346.06011MR46 #8607
  15. [Fr] M. FRIEDLIN, Functional Integration and Partial Differential Equations, Ann. of Math. Studies 109, 1985, Princeton University Press. Zbl0568.60057MR87g:60066
  16. [H] L. HÖRMANDER, Introduction to Complex Analysis in Several Variables, Elsevier (North-Holland Mathematical Library, Vol. 7), Amsterdam, 3rd edition, 1990. Zbl0685.32001MR91a:32001
  17. [HS1] B. HELFFER AND J. SJÖSTRAND, Multiple wells in the semi-classical limit I, Commun. PDE 9 (4), 337-408, 1984. Zbl0546.35053
  18. [HS2] B. HELFFER AND J. SJÖSTRAND, On the correlation for Kac like models in the convex case, J. Stat. Phys., 349-409, 1994 74 (1,2). Zbl0946.35508MR95g:82022
  19. [IS] J. Z. IMBRIE AND T. SPENCER, Diffusion of directed polymers in a random environment, J of Stat. Phys., 609-626, 1988. Zbl1084.82595MR90m:60122
  20. [Jo] J. JOHNSEN, On spectral properties of Witten-Laplacians, their range projections and Brascamp-Lieb inequality, Aalborg University preprint, 1998. Zbl1023.58012
  21. [K] A. KLEIN, The supersymmetric replica trick and smoothness of the density of states for the random Schrödinger operators, 1990 51, Proceedings of Symposium in Pure Mathematics. Zbl0709.60105MR92b:82076
  22. [KS] A. KLEIN, A. SPIES, Smmothness of the density of states in the Anderson model on a one-dimensional strip, Ann. of Phys. 183, 1988, 352-398. Zbl0635.60077
  23. [Kom] T. KOMOROWSKIBrownian motion in a Poissonian obstacle field, Séminaire N. Bourbaki, 853, 1998. Zbl0964.60091
  24. [La] Intersection of Random WalksG. F. LAWLER, Birkhäuser, 1991. 
  25. [Li] T. M. LIGGETT, Interacting Particle Systems, 1985, Springer-Verlag. Zbl0559.60078MR86e:60089
  26. [MS] The self-Avoiding WalkN. MADRAS, G. SLADE, Birkhäuser, 1993. Zbl0780.60103MR94f:82002
  27. [PF] Spectra of Random and Almost Periodic OperatorsL. PASTUR AND A. FIGOTIN, Springer, 1992. Zbl0752.47002MR94h:47068
  28. [Po] T. POVEL, The one dimensional annealed δ-Lyapunov exponent, Ann. IHP, Probab. et Stat., 61-72, 1998 34. Zbl0903.60093MR2000c:60167
  29. [P-L] P. J. PAES-LEME, Ornstein-Zernike and analyticity properties for classical lattice spin systems, Ann. Phys. 115, 367, 1978. Zbl0397.42011MR80a:81044
  30. [Sch] R. S. SCHOR, The particle structure of v-dimensional Ising models at low temperature, Commun. Math. Phys. 59, 213, 1978. MR58 #4122
  31. [Sin] YA. G. SINAI, A remark concerning random walk with random potentials, Fund. Math 147, 173-180, 1995. Zbl0835.60062MR96k:60185
  32. [Sj1] J. SJÖSTRAND, Correlation asymptotics and Witten Laplacians, Algebra and Analysis, 1996 8. Zbl0877.35084
  33. [Sj2] J. SJÖSTRAND, (In preparation). 
  34. [Spi] F. SPITZER, Principles of Random Walks, D. Van Nostrand Company, Inc, 1964. Zbl0119.34304MR30 #1521
  35. [Spe] T. SPENCER, (Private conversations). 
  36. [Sz1] A. S. SZNITMAN, Brownian motion, Obstacles and Random media, Springer Monograph in Mathematics, 1998. Zbl0973.60003MR2001h:60147
  37. [Sz2] A. S. SZNITMAN, Shape theorem, Lyapunov exponents and large deviations for Brownian motion in a Poissonian potential, Commun. Pure Appl. Math, 1994. Zbl0814.60022
  38. [SW1] J. SJÖSTRAND AND W. M. WANG, Supersymmetric measures and maximum priciples in the complex domain-decay of Green's functions, Ann. Scient. Éc. Norm. Sup. 32, 1999. Zbl0941.47033
  39. [SW2] J. SJÖSTRAND AND W. M. WANG, Decay of averaged Green's functions-a direct approach, Ann. Scient. Éc. Norm. Sup. 32, 1999. Zbl0934.35036
  40. [V] T. VORONOV, Geometric Integration Theory on Supermanifolds, Mathematical Physics Review, USSR Academy of Sciences, 1993, Moscow. Zbl0839.58014
  41. [Wa] W-M WANG, Supersymmetry, Witten complex and asymptotics for directional Lyapunov exponents in Zd, Orsay Preprint, 1999. 
  42. [W] E. WITTEN, Supersymmetry and Morse theory, J. Diff. Geom 17, 661-692, 1982. Zbl0499.53056MR84b:58111
  43. [Z] M. P. W. ZERNER, Directional decay of the Green's function for a random nonnegative potential on Zd, The Annals of Applied Probability, 1998, 246-280. Zbl0938.60098MR99f:60172

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.