Quantum diffusion and generalized Rényi dimensions of spectral measures
Jean-Marie Barbaroux; François Germinet; Serguei Tcheremchantsev
Journées équations aux dérivées partielles (2000)
- page 1-16
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topBarbaroux, Jean-Marie, Germinet, François, and Tcheremchantsev, Serguei. "Quantum diffusion and generalized Rényi dimensions of spectral measures." Journées équations aux dérivées partielles (2000): 1-16. <http://eudml.org/doc/93397>.
@article{Barbaroux2000,
abstract = {We estimate the spreading of the solution of the Schrödinger equation asymptotically in time, in term of the fractal properties of the associated spectral measures. For this, we exhibit a lower bound for the moments of order $p$ at time $T$ for the state $\psi $ defined by $[ \frac\{1\}\{T\}\int _0^T \Vert |X|^\{p/2\} \mathrm \{e\}^\{-itH\}\psi \Vert ^2\, \mathrm \{d\}t]$. We show that this lower bound can be expressed in term of the generalized Rényi dimension of the spectral measure $\mu _\psi $ associated to the hamiltonian $H$ and the state $\psi $. We especially concentrate on continuous models.},
author = {Barbaroux, Jean-Marie, Germinet, François, Tcheremchantsev, Serguei},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-16},
publisher = {Université de Nantes},
title = {Quantum diffusion and generalized Rényi dimensions of spectral measures},
url = {http://eudml.org/doc/93397},
year = {2000},
}
TY - JOUR
AU - Barbaroux, Jean-Marie
AU - Germinet, François
AU - Tcheremchantsev, Serguei
TI - Quantum diffusion and generalized Rényi dimensions of spectral measures
JO - Journées équations aux dérivées partielles
PY - 2000
PB - Université de Nantes
SP - 1
EP - 16
AB - We estimate the spreading of the solution of the Schrödinger equation asymptotically in time, in term of the fractal properties of the associated spectral measures. For this, we exhibit a lower bound for the moments of order $p$ at time $T$ for the state $\psi $ defined by $[ \frac{1}{T}\int _0^T \Vert |X|^{p/2} \mathrm {e}^{-itH}\psi \Vert ^2\, \mathrm {d}t]$. We show that this lower bound can be expressed in term of the generalized Rényi dimension of the spectral measure $\mu _\psi $ associated to the hamiltonian $H$ and the state $\psi $. We especially concentrate on continuous models.
LA - eng
UR - http://eudml.org/doc/93397
ER -
References
top- [1] I.N. Akhiezer, I.M. Glazman, Theory of linear Operators in Hilbert spaces Vol II, Ungar, New-York, 1963. Zbl0098.30702
- [2] J.-M. Barbaroux, J.-M. Combes, R. Montcho, Remarks on the relation between quantum dynamics and fractal spectra, J. Math. Anal and Appl. 213 (1997), 698-722. Zbl0893.47048MR98g:81028
- [3] J.-M. Barbaroux, F. Germinet, S. Tcheremchantsev, Nonlinear variation of diffusion exponents in quantum dynalics, C.R. Acad. Sci., Parist.330 Série I (1999), 409-414. Fractal dimensions and the phenomenon of intermittency in quantum dynamics, Preprint (2000). Zbl0963.81024
- [4] J.-M. Barbaroux, F. Germinet, S. Tcheremchantsev, Generalized fractal dimensions : equivalences and basic properties, Preprint (2000). Zbl1050.28006
- [5] J.-M. Barbaroux, H. Schulz-Baldes, Anomalous quantum transport in presence of self-similar spectra, Ann. Inst. Henri Poincaré Vol 71, Numero 5 (1999), 1-21. Zbl1076.82531MR2001a:82068
- [6] J.-M. Barbaroux, S. Tcheremchantsev, Universal Lower Bounds for Quantum Diffusion, J. Funct. Anal. 168 (1999), 327-354. Zbl0961.81008MR2000h:81060
- [7] J.-M. Combes, Connection between quantum dynamics and spectral properties of time evolution operators in «Differential Equations and Applications in Mathematical Physics», Eds. W.F. Ames, E.M. Harrel, J.V. Herod (Academic Press 1993), 59-69. Zbl0797.35136MR94g:81205
- [8] J.-M. Combes, G. Mantica, A sparse potential test of Guarneri bounds, to appear in the Proceeding of the Conference on Asymptotics Properties of Time Evolutions in Classical and Quantum Systems, Bologna, 1999.
- [9] Del Rio R., Jitomirskaya S., Last Y., Simon B., Operators with singular continuous spectrum IV : Hausdorff dimensions, rank one perturbations and localization, J. d'Analyse Math. 69 (1996), 153-200. Zbl0908.47002MR97m:47002
- [10] K.-J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, No 85, Cambridge Univ. Press, UK, 1985. Zbl0587.28004MR88d:28001
- [11] I. Guarneri, Spectral properties of quantum diffusion on discrete lattices, Europhys. Lett. 10 (1989), 95-100; On an estimate concerning quantum diffusion in the presence of a fractal spectrum, Europhys. Lett. 21 (1993), 729-733.
- [12] I. Guarneri, H. Schulz-Baldes, Lower bounds on wave packet propagation by packing dimensions of spectral measures, Math. Phys. Elec. J. 5, paper 1 (1999). Zbl0910.47059MR2000d:81033
- [13] I. Guarneri, H. Schulz-Baldes, Intermittent lower bound on quantum diffusion, Lett. Math. Phys. 49 (1999), 317-324. Zbl1001.81019MR2001c:81044
- [14] S. Jitomirskaya, Y. Last : Dimensional Hausdorff properties of singular continuous spectra Phys. Rev. Letters 76 (1996), 1765-1769. Zbl0935.81018MR96k:81041
- [15] Y. Last, Quantum Dynamics and Decomposition of Singular Continuous Spectrum, J. Funct. Anal 142 (1996), 406-445. Zbl0905.47059MR97k:81044
- [16] G. Mantica. Quantum intermittency in almost periodic systems derived from their spectral properties, Physica D 103 (1997), 576-589; Wave Propagation in Almost-Periodic Structures, Physica D 109 (1997), 113-127. Zbl0925.58041
- [17] R.S. Strichartz: Fourier asymptotics of fractal measures, J. Funct. Anal. 89 (1990), 154-187. Zbl0693.28005MR91m:42015
- [18] B. Simon, Schrödinger semi-groups, Bull. Amer. Math. Soc. Vol. 7, n° 3 (1982), 447-526. Zbl0524.35002MR86b:81001a
- [19] S.J. Taylor, C. Tricot, Packing Measure, and its Evaluation for a Brownian Path, Trans. Amer. Math. Soc. 288 (1985), 679-699. Zbl0537.28003MR87a:28002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.