Quantum diffusion and generalized Rényi dimensions of spectral measures

Jean-Marie Barbaroux; François Germinet; Serguei Tcheremchantsev

Journées équations aux dérivées partielles (2000)

  • page 1-16
  • ISSN: 0752-0360

Abstract

top
We estimate the spreading of the solution of the Schrödinger equation asymptotically in time, in term of the fractal properties of the associated spectral measures. For this, we exhibit a lower bound for the moments of order p at time T for the state ψ defined by [ 1 T 0 T | X | p / 2 e - i t H ψ 2 d t ] . We show that this lower bound can be expressed in term of the generalized Rényi dimension of the spectral measure μ ψ associated to the hamiltonian H and the state ψ . We especially concentrate on continuous models.

How to cite

top

Barbaroux, Jean-Marie, Germinet, François, and Tcheremchantsev, Serguei. "Quantum diffusion and generalized Rényi dimensions of spectral measures." Journées équations aux dérivées partielles (2000): 1-16. <http://eudml.org/doc/93397>.

@article{Barbaroux2000,
abstract = {We estimate the spreading of the solution of the Schrödinger equation asymptotically in time, in term of the fractal properties of the associated spectral measures. For this, we exhibit a lower bound for the moments of order $p$ at time $T$ for the state $\psi $ defined by $[ \frac\{1\}\{T\}\int _0^T \Vert |X|^\{p/2\} \mathrm \{e\}^\{-itH\}\psi \Vert ^2\, \mathrm \{d\}t]$. We show that this lower bound can be expressed in term of the generalized Rényi dimension of the spectral measure $\mu _\psi $ associated to the hamiltonian $H$ and the state $\psi $. We especially concentrate on continuous models.},
author = {Barbaroux, Jean-Marie, Germinet, François, Tcheremchantsev, Serguei},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-16},
publisher = {Université de Nantes},
title = {Quantum diffusion and generalized Rényi dimensions of spectral measures},
url = {http://eudml.org/doc/93397},
year = {2000},
}

TY - JOUR
AU - Barbaroux, Jean-Marie
AU - Germinet, François
AU - Tcheremchantsev, Serguei
TI - Quantum diffusion and generalized Rényi dimensions of spectral measures
JO - Journées équations aux dérivées partielles
PY - 2000
PB - Université de Nantes
SP - 1
EP - 16
AB - We estimate the spreading of the solution of the Schrödinger equation asymptotically in time, in term of the fractal properties of the associated spectral measures. For this, we exhibit a lower bound for the moments of order $p$ at time $T$ for the state $\psi $ defined by $[ \frac{1}{T}\int _0^T \Vert |X|^{p/2} \mathrm {e}^{-itH}\psi \Vert ^2\, \mathrm {d}t]$. We show that this lower bound can be expressed in term of the generalized Rényi dimension of the spectral measure $\mu _\psi $ associated to the hamiltonian $H$ and the state $\psi $. We especially concentrate on continuous models.
LA - eng
UR - http://eudml.org/doc/93397
ER -

References

top
  1. [1] I.N. Akhiezer, I.M. Glazman, Theory of linear Operators in Hilbert spaces Vol II, Ungar, New-York, 1963. Zbl0098.30702
  2. [2] J.-M. Barbaroux, J.-M. Combes, R. Montcho, Remarks on the relation between quantum dynamics and fractal spectra, J. Math. Anal and Appl. 213 (1997), 698-722. Zbl0893.47048MR98g:81028
  3. [3] J.-M. Barbaroux, F. Germinet, S. Tcheremchantsev, Nonlinear variation of diffusion exponents in quantum dynalics, C.R. Acad. Sci., Parist.330 Série I (1999), 409-414. Fractal dimensions and the phenomenon of intermittency in quantum dynamics, Preprint (2000). Zbl0963.81024
  4. [4] J.-M. Barbaroux, F. Germinet, S. Tcheremchantsev, Generalized fractal dimensions : equivalences and basic properties, Preprint (2000). Zbl1050.28006
  5. [5] J.-M. Barbaroux, H. Schulz-Baldes, Anomalous quantum transport in presence of self-similar spectra, Ann. Inst. Henri Poincaré Vol 71, Numero 5 (1999), 1-21. Zbl1076.82531MR2001a:82068
  6. [6] J.-M. Barbaroux, S. Tcheremchantsev, Universal Lower Bounds for Quantum Diffusion, J. Funct. Anal. 168 (1999), 327-354. Zbl0961.81008MR2000h:81060
  7. [7] J.-M. Combes, Connection between quantum dynamics and spectral properties of time evolution operators in «Differential Equations and Applications in Mathematical Physics», Eds. W.F. Ames, E.M. Harrel, J.V. Herod (Academic Press 1993), 59-69. Zbl0797.35136MR94g:81205
  8. [8] J.-M. Combes, G. Mantica, A sparse potential test of Guarneri bounds, to appear in the Proceeding of the Conference on Asymptotics Properties of Time Evolutions in Classical and Quantum Systems, Bologna, 1999. 
  9. [9] Del Rio R., Jitomirskaya S., Last Y., Simon B., Operators with singular continuous spectrum IV : Hausdorff dimensions, rank one perturbations and localization, J. d'Analyse Math. 69 (1996), 153-200. Zbl0908.47002MR97m:47002
  10. [10] K.-J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, No 85, Cambridge Univ. Press, UK, 1985. Zbl0587.28004MR88d:28001
  11. [11] I. Guarneri, Spectral properties of quantum diffusion on discrete lattices, Europhys. Lett. 10 (1989), 95-100; On an estimate concerning quantum diffusion in the presence of a fractal spectrum, Europhys. Lett. 21 (1993), 729-733. 
  12. [12] I. Guarneri, H. Schulz-Baldes, Lower bounds on wave packet propagation by packing dimensions of spectral measures, Math. Phys. Elec. J. 5, paper 1 (1999). Zbl0910.47059MR2000d:81033
  13. [13] I. Guarneri, H. Schulz-Baldes, Intermittent lower bound on quantum diffusion, Lett. Math. Phys. 49 (1999), 317-324. Zbl1001.81019MR2001c:81044
  14. [14] S. Jitomirskaya, Y. Last : Dimensional Hausdorff properties of singular continuous spectra Phys. Rev. Letters 76 (1996), 1765-1769. Zbl0935.81018MR96k:81041
  15. [15] Y. Last, Quantum Dynamics and Decomposition of Singular Continuous Spectrum, J. Funct. Anal 142 (1996), 406-445. Zbl0905.47059MR97k:81044
  16. [16] G. Mantica. Quantum intermittency in almost periodic systems derived from their spectral properties, Physica D 103 (1997), 576-589; Wave Propagation in Almost-Periodic Structures, Physica D 109 (1997), 113-127. Zbl0925.58041
  17. [17] R.S. Strichartz: Fourier asymptotics of fractal measures, J. Funct. Anal. 89 (1990), 154-187. Zbl0693.28005MR91m:42015
  18. [18] B. Simon, Schrödinger semi-groups, Bull. Amer. Math. Soc. Vol. 7, n° 3 (1982), 447-526. Zbl0524.35002MR86b:81001a
  19. [19] S.J. Taylor, C. Tricot, Packing Measure, and its Evaluation for a Brownian Path, Trans. Amer. Math. Soc. 288 (1985), 679-699. Zbl0537.28003MR87a:28002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.