Anomalous quantum transport in presence of self-similar spectra

J.-M. Barbaroux; H. Schulz-Baldes

Annales de l'I.H.P. Physique théorique (1999)

  • Volume: 71, Issue: 5, page 539-559
  • ISSN: 0246-0211

How to cite

top

Barbaroux, J.-M., and Schulz-Baldes, H.. "Anomalous quantum transport in presence of self-similar spectra." Annales de l'I.H.P. Physique théorique 71.5 (1999): 539-559. <http://eudml.org/doc/76844>.

@article{Barbaroux1999,
author = {Barbaroux, J.-M., Schulz-Baldes, H.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {5},
pages = {539-559},
publisher = {Gauthier-Villars},
title = {Anomalous quantum transport in presence of self-similar spectra},
url = {http://eudml.org/doc/76844},
volume = {71},
year = {1999},
}

TY - JOUR
AU - Barbaroux, J.-M.
AU - Schulz-Baldes, H.
TI - Anomalous quantum transport in presence of self-similar spectra
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 71
IS - 5
SP - 539
EP - 559
LA - eng
UR - http://eudml.org/doc/76844
ER -

References

top
  1. [1] J.-M. Barbaroux, Dynamique quantique des Milieux désordonnés, Ph.D. Thesis, Toulon, 1997. 
  2. [2] J.-M. Barbaroux, J.M. Combes and R. Montcho, Remarks on the relation between quantum dynamics and fractal spectra, J. Math. Anal. Appl.213 (1997) 698-722. Zbl0893.47048MR1470878
  3. [3] J. Bellissard, Stability and instability in quantum mechanics, in: S. Albeverio and Ph. Blanchard (Eds.), Trends and Developments in the Eighties, World Scientific, Singapore, 1985. Zbl0584.35024MR853743
  4. [4] T. Bohr and D. Rand, The entropy function for characteristic exponents, Physica D 25 (1987) 387-398. Zbl0643.58006MR887471
  5. [5] R. Bowen, Equilibrium states and the ergodic theory of anosov diffeomorphisms, Lect. Notes Math., Vol. 470, Springer, Berlin, 1975. Zbl0308.28010MR442989
  6. [6] A. Dembo and O. Zeitouni, Large Deviation Techniques and Applications, Jones and Barlett, Boston, London, 1993. Zbl0793.60030MR1202429
  7. [7] I. Guarneri, Spectral properties of quantum diffusion on discrete lattices, Europhys. Lett.10 (1989) 95-100; On an estimate concerning quantum diffusion in the presence of a fractal spectrum, Europhys. Lett.21 (1993) 729-733. 
  8. [8] I. Guarneri and G. Mantica, Multifractal energy spectra and their dynamical implications, Phys. Rev. Lett.73 (1994) 3379-3383. 
  9. [9] I. Guarneri, Singular continuous spectra and discrete wave packet dynamics, J. Math. Phys.37 (1996) 5195-5206. Zbl0894.46051MR1411626
  10. [10] I. Guarneri and H. Schulz-Baldes, Upper bounds for quantum dynamics governed by Jacobi matrices with self-similar spectra, Rev. Math. Phys., to appear. Zbl0969.81018MR1734713
  11. [11] H. Hiramoto and S. Abe, Dynamics of an electron in quasiperiodic systems. I. Fibonacci model, J. Phys. Soc. Japan57 (1988) 230-240; Dynamics of an electron in quasiperiodic systems. II. Harper model, J. Phys. Soc. Japan57 (1988) 1365-1372. 
  12. [12] Y. Last, Quantum dynamics and decomposition of singular continuous spectra, J. Funct. Anal.142 (1996) 402-445. Zbl0905.47059MR1423040
  13. [13] G. Mantica, Quantum intermittency in almost periodic systems derived from their spectral properties, Physica D 103 (1997) 576-589; Wave propagation in almost-periodic structures, Physica D 109 (1997) 113-127. Zbl0925.58041
  14. [14] D. Mayou, Introduction to the theory of electronic properties of quasicrystals, in: F. Hippert and D. Gratias (Eds.), Lectures on Quasicrystals, Les Éditions de Physique, Les Ulis, 1994, 417-462. 
  15. [15] F. Piéchon, Anomalous diffusion properties of wave packets on quasiperiodic chains, Phys. Rev. Lett.76 (1996) 4372-4375. 
  16. [16] D. Ruelle, Thermodynamic Formalism, Addison-Wesley, Reading, MA, 1978. MR511655
  17. [17] H. Schulz-Baldes and J. Bellissard, Anomalous transport: A mathematical framework, Rev. Math. Phys.10 (1998) 1-46. Zbl0908.47066MR1606847
  18. [18] H. Schulz-Baldes and J. Bellissard, A kinetic theory for quantum transport in aperiodic media, J. Stat. Phys.91 (1998) 991-1027. Zbl0960.82029MR1637278
  19. [19] G. Servizi, G. Turchetti and S. Vaienti, Generalized dynamical variables and measures for the Julia sets, Nuovo Cimento101 B (1988) 285-307. MR962588
  20. [20] C. Sire, B. Passaro and V. Benza, Anomalous diffusion and conductivity in octagonal tiling models, Phys. Rev. B46 (1992) 13751-13754. 
  21. [21] A. Sütó, The spectrum of a quasiperiodic Schrödinger operator, Commun. Math. Phys.111 (1987) 409-415; Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian, J. Stat. Phys.56 (1989) 525- 530. Zbl0624.34017MR900502
  22. [22] H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge University Press, Cambridge, 1992. Zbl0791.33009MR1163828

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.