Recent results on Lieb-Thirring inequalities

Ari Laptev; Timo Weidl

Journées équations aux dérivées partielles (2000)

  • page 1-14
  • ISSN: 0752-0360

Abstract

top
We give a survey of results on the Lieb-Thirring inequalities for the eigenvalue moments of Schrödinger operators. In particular, we discuss the optimal values of the constants therein for higher dimensions. We elaborate on certain generalisations and some open problems as well.

How to cite

top

Laptev, Ari, and Weidl, Timo. "Recent results on Lieb-Thirring inequalities." Journées équations aux dérivées partielles (2000): 1-14. <http://eudml.org/doc/93398>.

@article{Laptev2000,
abstract = {We give a survey of results on the Lieb-Thirring inequalities for the eigenvalue moments of Schrödinger operators. In particular, we discuss the optimal values of the constants therein for higher dimensions. We elaborate on certain generalisations and some open problems as well.},
author = {Laptev, Ari, Weidl, Timo},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-14},
publisher = {Université de Nantes},
title = {Recent results on Lieb-Thirring inequalities},
url = {http://eudml.org/doc/93398},
year = {2000},
}

TY - JOUR
AU - Laptev, Ari
AU - Weidl, Timo
TI - Recent results on Lieb-Thirring inequalities
JO - Journées équations aux dérivées partielles
PY - 2000
PB - Université de Nantes
SP - 1
EP - 14
AB - We give a survey of results on the Lieb-Thirring inequalities for the eigenvalue moments of Schrödinger operators. In particular, we discuss the optimal values of the constants therein for higher dimensions. We elaborate on certain generalisations and some open problems as well.
LA - eng
UR - http://eudml.org/doc/93398
ER -

References

top
  1. [1] Aizenman M. and Lieb E.H.: On semi-classical bounds for eigenvalues of Schrödinger operators. Phys. Lett. 66A, 427-429 (1978) MR81m:81020
  2. [2] Benguria R and Loss M.: A simple proof of a theorem by Laptev and Weidl. Preprint (1999). Zbl0963.34077
  3. [3] Berezin F.A.: Covariant and contravariant symbols of operators. [English Translation] Math. USSR, 6, 1117-1151 (1972) Zbl0259.47004MR50 #2996
  4. [4] Birman M.S.: The spectrum of singular boundary problems. (Russian) Mat. Sb. (N.S.) 55 (97), 125-174 (1961). (English) Amer. Math. Soc. Transl. 53, 23-80 (1966) Zbl0174.42502MR26 #463
  5. [5] Birman M. S. and Laptev A.: The negative discrete spectrum of a two-dimensional Schrödinger operator. Comm. Pure and Appl. Math., XLIX, 967-997 (1996) Zbl0864.35080MR97i:35131
  6. [6] Blanchard Ph. and Stubbe J.: Bound states for Schrödinger Hamiltonians: Phase Space Methods and Applications. Rev. Math. Phys., 35, 504-547 (1996) Zbl0859.35101
  7. [7] Buslaev V.S. and Faddeev L.D: Formulas for traces for a singular Sturm-Liouville differential operator. [English translation], Dokl. AN SSSR, 132, 451-454 (1960) Zbl0129.06501MR22 #11171
  8. [8] Cwikel M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Trans. AMS, 224, 93-100 (1977) Zbl0362.47006MR57 #13242
  9. [9] De la Bretèche R.: Preuve de la conjecture de Lieb-Thirring dans le cas des potentiels quadratiques strictement convexes. Ann. Inst. H. Poincaré Phys. théor., 70, 369-380 (1999) Zbl0938.35148MR2000e:81035
  10. [10] Egorov Yu. V. and Kontrat'ev V.A.: On spectral theory of elliptic operators. Operator Theory: Advances and Applications, 89, Birkhäuser Verlag, Basel, 1996. x+328 pp. Zbl0855.35001MR97m:35189
  11. [11] Faddeev L.D. and Zakharov V.E.: Korteweg-de Vries equation: A completely integrable hamiltonian system. Func. Anal. Appl., 5, 18-27 (1971) Zbl0257.35074
  12. [12] Glaser V., Grosse H. and Martin A.: Bounds on the number of eigenvalues of the Schrödinger operator. Commun. Math. Phys., 59, 197-212 (1978) Zbl0373.35050MR81a:35081
  13. [13] Helffer B. and Robert D.: Riesz means of bounded states and semi-classical limit connected with a Lieb-Thirring conjecture I, II. I -Jour. Asymp. Anal., 3, 91-103 (1990), II — Ann. de l'Inst. H. Poincare, 53 (2), 139-147 (1990) Zbl0717.35062MR91h:35241
  14. [14] Hundertmark D., Laptev A. and Weidl T.: New bounds on the Lieb-Thirring constants. to appear in Inventiones mathematicae. Zbl1074.35569
  15. [15] Hundertmark D., Lieb E.H. and Thomas L.E.: A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator. Adv. Theor. Math. Phys. 2, 719-731 (1998) Zbl0929.34076MR2000c:81062
  16. [16] Laptev A.: Dirichlet and Neumann Eigenvalue Problems on Domains in Euclidean Spaces. J. Func. Anal., 151, 531-545 (1997) Zbl0892.35115MR99a:35027
  17. [17] Laptev A.: On the Lieb-Thirring conjecture for a class of potentials. Operator Theory: Adv. and Appl., 110, 227-234 (1999) Zbl0938.35112MR2001c:35174
  18. [18] Laptev A., Weidl T.: Sharp Lieb-Thirring inequalities in high dimensions. Acta Mathematica, 184, 87-111 (2000) Zbl1142.35531MR2001c:35173
  19. [19] Li P. and Yau S.-T.: On the Schrödinger equation and the eigenvalue problem. Comm. Math. Phys., 88, 309-318 (1983) Zbl0554.35029MR84k:58225
  20. [20] Lieb, E.H.: The number of bound states of one body Schrödinger operators and the Weyl problem. Bull. Amer. Math. Soc., 82, 751-753 (1976) Zbl0329.35018
  21. [21] Lieb, E.H.: Lieb-Thirring Inequalities. Preprint mp-arc 00-132 (2000) 
  22. [22] Lieb E.H. and Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. Studies in Math. Phys., Essays in Honor of Valentine Bargmann., Princeton, 269-303 (1976) Zbl0342.35044
  23. [23] Netrusov Y. and Weidl T.: On Lieb-Thirring inequalities for higher order operators with critical and subcritical powers. Comm. Math. Phys., 182 (1), 355-370 (1996) Zbl0865.47033MR98d:47103
  24. [24] Rozenblum, G.V.: Distribution of the discrete spectrum of singular differential operators. Dokl. AN SSSR, 202, 1012-1015 (1972), Izv. VUZov, Matematika, 1, 75-86 (1976) Zbl0249.35069MR45 #4216
  25. [25] Ruelle D.: Large volume limit of the distribution of characteristic exponents in turbulence. Comm. Math. Phys., 87, 287-302 (1982) Zbl0546.76083MR85c:76046
  26. [26] Y.Schwinger: On the bound states for a given potential. Proc. Nat. Acad. Sci. U.S.A., 47, 122-129 (1961) MR23 #B2833
  27. [27] B. Simon: The bound state of weakly coupled Schrödinger operators on one and two dimensions. Ann. Physics, 97 (2), 279-288, (1976) Zbl0325.35029MR53 #8646
  28. [28] Weidl, T.: On the Lieb-Thirring constants Lγ,1 for γ ≥ 1/2. Comm. Math. Phys., 178, 135-146 (1996) Zbl0858.34075MR97c:81039
  29. [29] Weidl, T.: Remarks on virtual bound states for semi-bounded operators. Comm. Part. Diff. Equ., 24 (1&2), 25-60, (1999) Zbl0926.47009MR2000a:47031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.