On the distribution of resonances for some asymptotically hyperbolic manifolds

R. G. Froese; Peter D. Hislop

Journées équations aux dérivées partielles (2000)

  • page 1-16
  • ISSN: 0752-0360

Abstract

top
We establish a sharp upper bound for the resonance counting function for a class of asymptotically hyperbolic manifolds in arbitrary dimension, including convex, cocompact hyperbolic manifolds in two dimensions. The proof is based on the construction of a suitable paramatrix for the absolute S -matrix that is unitary for real values of the energy. This paramatrix is the S -matrix for a model laplacian corresponding to a separable metric near infinity. The proof of the upper bound on the resonance counting function requires estimates on the growth of the relative scattering phase, and singular values of a family of integral operators.

How to cite

top

Froese, R. G., and Hislop, Peter D.. "On the distribution of resonances for some asymptotically hyperbolic manifolds." Journées équations aux dérivées partielles (2000): 1-16. <http://eudml.org/doc/93404>.

@article{Froese2000,
abstract = {We establish a sharp upper bound for the resonance counting function for a class of asymptotically hyperbolic manifolds in arbitrary dimension, including convex, cocompact hyperbolic manifolds in two dimensions. The proof is based on the construction of a suitable paramatrix for the absolute $S$-matrix that is unitary for real values of the energy. This paramatrix is the $S$-matrix for a model laplacian corresponding to a separable metric near infinity. The proof of the upper bound on the resonance counting function requires estimates on the growth of the relative scattering phase, and singular values of a family of integral operators.},
author = {Froese, R. G., Hislop, Peter D.},
journal = {Journées équations aux dérivées partielles},
keywords = {resonance counting function; asymptotically hyperbolic manifolds},
language = {eng},
pages = {1-16},
publisher = {Université de Nantes},
title = {On the distribution of resonances for some asymptotically hyperbolic manifolds},
url = {http://eudml.org/doc/93404},
year = {2000},
}

TY - JOUR
AU - Froese, R. G.
AU - Hislop, Peter D.
TI - On the distribution of resonances for some asymptotically hyperbolic manifolds
JO - Journées équations aux dérivées partielles
PY - 2000
PB - Université de Nantes
SP - 1
EP - 16
AB - We establish a sharp upper bound for the resonance counting function for a class of asymptotically hyperbolic manifolds in arbitrary dimension, including convex, cocompact hyperbolic manifolds in two dimensions. The proof is based on the construction of a suitable paramatrix for the absolute $S$-matrix that is unitary for real values of the energy. This paramatrix is the $S$-matrix for a model laplacian corresponding to a separable metric near infinity. The proof of the upper bound on the resonance counting function requires estimates on the growth of the relative scattering phase, and singular values of a family of integral operators.
LA - eng
KW - resonance counting function; asymptotically hyperbolic manifolds
UR - http://eudml.org/doc/93404
ER -

References

top
  1. [1] U. Bunke, M. Olbrich, Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group, Ann. Math. 149, 627-689 (1999). Zbl0969.11019MR2000f:11110
  2. [2] T. Christiansen, Spectral asymptotics for compactly supported perturbations of the Laplacian on ℝn, Commun. PDE 23, 933-948 (1998). Zbl0912.35115MR99j:35157
  3. [3] R. G. Froese, Upper bounds for the resonance counting function for the Schrödinger operators in odd dimensions, Canadian J. Math. 50, 538-546 (1ç1998). Zbl0918.47005MR99f:35150
  4. [4] R. G. Froese, P. D. Hislop, Upper bounds for the resonance counting function for some asymptotically hyperbolic manifolds, in preparation. Zbl1016.58018
  5. [5] R. G. Froese, P. D. Hislop, P. A. Perry, A Mourre Estimate and Related Bounds for the Laplace Operator on a Hyperbolic Manifold with Cusps of Nonmaximal Rank, J. Funct. Anal. 98, 292-310 (1991). Zbl0729.58051MR92h:58198
  6. [6] R. G. Froese, P. D. Hislop, P. A. Perry, The Laplace operator on hyperbolic Manifolds with Cusps of Non-maximal Rank, Inventiones Math. 106, 295-333 (1991). Zbl0763.58028MR93b:11065
  7. [7] C. Gérard, A. Matrinez, Principe d'absorption limite pour les opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris 306, 121-123 (1988). Zbl0672.35013
  8. [8] P. D. Hislop, The geometry and spectra of hyperbolic manifolds, Proc. Indian Acad. Sci. (Math. Sci.) 104, 715-776 (1994). Zbl0832.58005MR96b:58117
  9. [9] L. Guillopé, M. Zworski, Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature at infinity, Asymp. Anal. 11, 1-22 (1995). Zbl0859.58028MR96h:58172
  10. [10] L. Guillopé, M. Zworski, Upper bounds on the number of resonances of non-compact Riemann surfaces, J. Func. Anal. 129, 364-389 (1995). Zbl0841.58063MR96b:58116
  11. [11] L. Guillopé, M. Zworski, Scattering asymptotics for Riemann surfaces, Ann. of Math. 145, 597-660 (1997). Zbl0898.58054MR98g:58181
  12. [12] A. Jensen, High energy resolvent estimates for generalized many-body Schrödinger operators, Publ. RIMS, Kyoto Univ. 25, 155-167 (1989). Zbl0717.35066MR90i:35212
  13. [13] M. S. Joshi, A. Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds, Acta Math. 2000. Zbl1142.58309MR2002g:58052
  14. [14] P. Lax, R. S. Phillips, Scattering theory for automorphic functions, Ann. Math. Studies 87, Princeton : Princeton University Press, 1976. Zbl0362.10022MR58 #27768
  15. [15] N. Mandouvalos, Scattering operator and Eisenstein integral for Kleinian groups, Math. Proc. Cambridge Philos. Soc. 108, 203-217 (1990). Zbl0719.11031MR92e:58220
  16. [16] R. Mazzeo, R. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75, 260-310 (1987). Zbl0636.58034MR89c:58133
  17. [17] S. J. Patterson, The Laplacian operator on a Riemann surface, I, II, and III, Compositio math. 31, 83-107 (1975) ; 32, 71-112 (1976) ; 33, 227-259 (1976). Zbl0321.30020MR52 #5575
  18. [18] S. J. Patterson, P. A. Perry, Divisor of the Selberg Zeta function, I. Even Dimensions, to appear in Duke Math. J. 2000. 
  19. [19] P. A. Perry, The Laplace operator on a hyperbolic manifold. II. Eisenstein series and the scattering matrix, J. reine. angew. Math. 398, 67-91 (1989). Zbl0677.58044MR90g:58138
  20. [20] P. A. Perry, The Selberg zeta function and a local trace formula for Kleinian groups, J. reine. angew. Math. 410, 116-152 (1990). Zbl0697.10027MR92e:11057
  21. [21] P. A. Perry, The Selberg Zeta function and scattering poles for Kleinian groups, Bull. Amer. Math. Soc. (N. S.) 24, 327-333 (1991). Zbl0723.11028MR92d:58213
  22. [22] P. A. Perry, Poisson formula and lower bounds on resonances for hyperbolic manifolds, preprint 2000. 
  23. [23] D. Robert, On the Weyl formula for obstacles, in «Partial differential equations and mathematical physics», 264-285, Progress in Nonlinear Differential Equations and their Applications, Boston : Birhäuser, 1996. Zbl0849.35096MR97i:35132
  24. [24] D. Robert, Asymptotique de la phase de diffusion à haute énergie pours les perturbations de second ordre du Laplacien, Ann. Scien. Ecole Norm. Sup. 25, 107-124 (1992). Zbl0801.35100MR93i:35096
  25. [25] G. Vodev, Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Commun. Math. Phys. 146, 205-216 (1992). Zbl0766.35032MR93f:35173
  26. [26] M. Zworski, Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces, to appear in Inventionnes math. 1999. Zbl1016.58014MR2002d:58038
  27. [27] M. Zworski, Counting Scattering Poles, in Spectral and Scattering Theory, M. Ikawa, ed., Marcel Decker, 1994. Zbl0823.35139MR95i:35210

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.