On the distribution of resonances for some asymptotically hyperbolic manifolds
Journées équations aux dérivées partielles (2000)
- page 1-16
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topFroese, R. G., and Hislop, Peter D.. "On the distribution of resonances for some asymptotically hyperbolic manifolds." Journées équations aux dérivées partielles (2000): 1-16. <http://eudml.org/doc/93404>.
@article{Froese2000,
abstract = {We establish a sharp upper bound for the resonance counting function for a class of asymptotically hyperbolic manifolds in arbitrary dimension, including convex, cocompact hyperbolic manifolds in two dimensions. The proof is based on the construction of a suitable paramatrix for the absolute $S$-matrix that is unitary for real values of the energy. This paramatrix is the $S$-matrix for a model laplacian corresponding to a separable metric near infinity. The proof of the upper bound on the resonance counting function requires estimates on the growth of the relative scattering phase, and singular values of a family of integral operators.},
author = {Froese, R. G., Hislop, Peter D.},
journal = {Journées équations aux dérivées partielles},
keywords = {resonance counting function; asymptotically hyperbolic manifolds},
language = {eng},
pages = {1-16},
publisher = {Université de Nantes},
title = {On the distribution of resonances for some asymptotically hyperbolic manifolds},
url = {http://eudml.org/doc/93404},
year = {2000},
}
TY - JOUR
AU - Froese, R. G.
AU - Hislop, Peter D.
TI - On the distribution of resonances for some asymptotically hyperbolic manifolds
JO - Journées équations aux dérivées partielles
PY - 2000
PB - Université de Nantes
SP - 1
EP - 16
AB - We establish a sharp upper bound for the resonance counting function for a class of asymptotically hyperbolic manifolds in arbitrary dimension, including convex, cocompact hyperbolic manifolds in two dimensions. The proof is based on the construction of a suitable paramatrix for the absolute $S$-matrix that is unitary for real values of the energy. This paramatrix is the $S$-matrix for a model laplacian corresponding to a separable metric near infinity. The proof of the upper bound on the resonance counting function requires estimates on the growth of the relative scattering phase, and singular values of a family of integral operators.
LA - eng
KW - resonance counting function; asymptotically hyperbolic manifolds
UR - http://eudml.org/doc/93404
ER -
References
top- [1] U. Bunke, M. Olbrich, Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group, Ann. Math. 149, 627-689 (1999). Zbl0969.11019MR2000f:11110
- [2] T. Christiansen, Spectral asymptotics for compactly supported perturbations of the Laplacian on ℝn, Commun. PDE 23, 933-948 (1998). Zbl0912.35115MR99j:35157
- [3] R. G. Froese, Upper bounds for the resonance counting function for the Schrödinger operators in odd dimensions, Canadian J. Math. 50, 538-546 (1ç1998). Zbl0918.47005MR99f:35150
- [4] R. G. Froese, P. D. Hislop, Upper bounds for the resonance counting function for some asymptotically hyperbolic manifolds, in preparation. Zbl1016.58018
- [5] R. G. Froese, P. D. Hislop, P. A. Perry, A Mourre Estimate and Related Bounds for the Laplace Operator on a Hyperbolic Manifold with Cusps of Nonmaximal Rank, J. Funct. Anal. 98, 292-310 (1991). Zbl0729.58051MR92h:58198
- [6] R. G. Froese, P. D. Hislop, P. A. Perry, The Laplace operator on hyperbolic Manifolds with Cusps of Non-maximal Rank, Inventiones Math. 106, 295-333 (1991). Zbl0763.58028MR93b:11065
- [7] C. Gérard, A. Matrinez, Principe d'absorption limite pour les opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris 306, 121-123 (1988). Zbl0672.35013
- [8] P. D. Hislop, The geometry and spectra of hyperbolic manifolds, Proc. Indian Acad. Sci. (Math. Sci.) 104, 715-776 (1994). Zbl0832.58005MR96b:58117
- [9] L. Guillopé, M. Zworski, Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature at infinity, Asymp. Anal. 11, 1-22 (1995). Zbl0859.58028MR96h:58172
- [10] L. Guillopé, M. Zworski, Upper bounds on the number of resonances of non-compact Riemann surfaces, J. Func. Anal. 129, 364-389 (1995). Zbl0841.58063MR96b:58116
- [11] L. Guillopé, M. Zworski, Scattering asymptotics for Riemann surfaces, Ann. of Math. 145, 597-660 (1997). Zbl0898.58054MR98g:58181
- [12] A. Jensen, High energy resolvent estimates for generalized many-body Schrödinger operators, Publ. RIMS, Kyoto Univ. 25, 155-167 (1989). Zbl0717.35066MR90i:35212
- [13] M. S. Joshi, A. Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds, Acta Math. 2000. Zbl1142.58309MR2002g:58052
- [14] P. Lax, R. S. Phillips, Scattering theory for automorphic functions, Ann. Math. Studies 87, Princeton : Princeton University Press, 1976. Zbl0362.10022MR58 #27768
- [15] N. Mandouvalos, Scattering operator and Eisenstein integral for Kleinian groups, Math. Proc. Cambridge Philos. Soc. 108, 203-217 (1990). Zbl0719.11031MR92e:58220
- [16] R. Mazzeo, R. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75, 260-310 (1987). Zbl0636.58034MR89c:58133
- [17] S. J. Patterson, The Laplacian operator on a Riemann surface, I, II, and III, Compositio math. 31, 83-107 (1975) ; 32, 71-112 (1976) ; 33, 227-259 (1976). Zbl0321.30020MR52 #5575
- [18] S. J. Patterson, P. A. Perry, Divisor of the Selberg Zeta function, I. Even Dimensions, to appear in Duke Math. J. 2000.
- [19] P. A. Perry, The Laplace operator on a hyperbolic manifold. II. Eisenstein series and the scattering matrix, J. reine. angew. Math. 398, 67-91 (1989). Zbl0677.58044MR90g:58138
- [20] P. A. Perry, The Selberg zeta function and a local trace formula for Kleinian groups, J. reine. angew. Math. 410, 116-152 (1990). Zbl0697.10027MR92e:11057
- [21] P. A. Perry, The Selberg Zeta function and scattering poles for Kleinian groups, Bull. Amer. Math. Soc. (N. S.) 24, 327-333 (1991). Zbl0723.11028MR92d:58213
- [22] P. A. Perry, Poisson formula and lower bounds on resonances for hyperbolic manifolds, preprint 2000.
- [23] D. Robert, On the Weyl formula for obstacles, in «Partial differential equations and mathematical physics», 264-285, Progress in Nonlinear Differential Equations and their Applications, Boston : Birhäuser, 1996. Zbl0849.35096MR97i:35132
- [24] D. Robert, Asymptotique de la phase de diffusion à haute énergie pours les perturbations de second ordre du Laplacien, Ann. Scien. Ecole Norm. Sup. 25, 107-124 (1992). Zbl0801.35100MR93i:35096
- [25] G. Vodev, Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Commun. Math. Phys. 146, 205-216 (1992). Zbl0766.35032MR93f:35173
- [26] M. Zworski, Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces, to appear in Inventionnes math. 1999. Zbl1016.58014MR2002d:58038
- [27] M. Zworski, Counting Scattering Poles, in Spectral and Scattering Theory, M. Ikawa, ed., Marcel Decker, 1994. Zbl0823.35139MR95i:35210
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.