Weyl type upper bounds on the number of resonances near the real axis for trapped systems

Plamen Stefanov

Journées équations aux dérivées partielles (2001)

  • page 1-16
  • ISSN: 0752-0360

Abstract

top
We study semiclassical resonances in a box Ω ( h ) of height h N , N 1 . We show that the semiclassical wave front set of the resonant states (including the “generalized eigenfunctions”) is contained in the set 𝒯 of the trapped bicharacteristics. We also show that for a suitable self-adjoint reference operator P # ( h ) with discrete spectrum the number of resonances in Ω ( h ) is bounded by the number of eigenvalues of P # ( h ) in an interval a bit larger than the projection of Ω ( h ) on the real line. As an application, we prove a Weyl type estimate of the number of resonances in Ω ( h ) in terms of the measure of 𝒯 . We prove a similar estimate in case of classical scattering by a metric and obstacle.

How to cite

top

Stefanov, Plamen. "Weyl type upper bounds on the number of resonances near the real axis for trapped systems." Journées équations aux dérivées partielles (2001): 1-16. <http://eudml.org/doc/93410>.

@article{Stefanov2001,
abstract = {We study semiclassical resonances in a box $\Omega (h)$ of height $h^N$, $N\gg 1$. We show that the semiclassical wave front set of the resonant states (including the “generalized eigenfunctions”) is contained in the set $\mathcal \{T\}$ of the trapped bicharacteristics. We also show that for a suitable self-adjoint reference operator $P^\#(h)$ with discrete spectrum the number of resonances in $\Omega (h)$ is bounded by the number of eigenvalues of $P^\#(h)$ in an interval a bit larger than the projection of $\Omega (h)$ on the real line. As an application, we prove a Weyl type estimate of the number of resonances in $\Omega (h)$ in terms of the measure of $\mathcal \{T\}$. We prove a similar estimate in case of classical scattering by a metric and obstacle.},
author = {Stefanov, Plamen},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-16},
publisher = {Université de Nantes},
title = {Weyl type upper bounds on the number of resonances near the real axis for trapped systems},
url = {http://eudml.org/doc/93410},
year = {2001},
}

TY - JOUR
AU - Stefanov, Plamen
TI - Weyl type upper bounds on the number of resonances near the real axis for trapped systems
JO - Journées équations aux dérivées partielles
PY - 2001
PB - Université de Nantes
SP - 1
EP - 16
AB - We study semiclassical resonances in a box $\Omega (h)$ of height $h^N$, $N\gg 1$. We show that the semiclassical wave front set of the resonant states (including the “generalized eigenfunctions”) is contained in the set $\mathcal {T}$ of the trapped bicharacteristics. We also show that for a suitable self-adjoint reference operator $P^\#(h)$ with discrete spectrum the number of resonances in $\Omega (h)$ is bounded by the number of eigenvalues of $P^\#(h)$ in an interval a bit larger than the projection of $\Omega (h)$ on the real line. As an application, we prove a Weyl type estimate of the number of resonances in $\Omega (h)$ in terms of the measure of $\mathcal {T}$. We prove a similar estimate in case of classical scattering by a metric and obstacle.
LA - eng
UR - http://eudml.org/doc/93410
ER -

References

top
  1. [B2] N. Burq, Lower bounds for shape resonances widths of long range Schrödinger operators, preprint. Zbl1013.35019MR1914456
  2. [B3] N. Burq, Semi-classical estimates for the resolvent in non-trappimg geometries, preprint. MR1876933
  3. [G] C. Gérard, Asymptotique des poles de la matrice de scattering pour deux obstacles strictement convex, Bull. Soc. Math. France, Mémoire n. 31, 116, 1988. Zbl0654.35081MR998698
  4. [DSj] M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, London Math. Society Lecture Notes Series, No. 268, Cambridge Univ. Press, 1999. Zbl0926.35002MR1735654
  5. [HSj] B. Helffer, J. Sjöstrand, Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.), 24-25, 1986. Zbl0631.35075MR871788
  6. [H] L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer-Verlag, Berlin, 1985. Zbl0601.35001MR404822
  7. [I] V. Ivrii, Microlocal Analysis and Precise Spectral Asymptotics, Springer-Verlag, Berlin, 1998. Zbl0906.35003MR1631419
  8. [K] T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, New York, 1966. Zbl0148.12601MR203473
  9. [LZ] K. Lin and M. Zworski, Resonances in chaotic scattering, www.math.berkeley.edu/~kkylin/resonances/. 
  10. [MSj] R. Melrose and J. Sjöstrand, Singularities of boundary value problems. I, II. Comm. Pure Appl. Math. 31 1978, no. 5, 593-617, and 35 1982, no. 2, 129-168. Zbl0546.35083
  11. [Po] G. Popov, Quasi-modes for the Laplace operator and Glancing hypersurfaces, in: Proceedings of Conference on Microlocal analysis and Nonlinear Waves, Minnesota 1989, M. Beals, R. Melrose and J. Rauch eds., Springer Verlag, Berlin-Heidelberg-New York, 1991. Zbl0794.35030MR1120290
  12. [Sj1] J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J. 60(1) 1990, 1-57. Zbl0702.35188MR1047116
  13. [Sj2] J. Sjöstrand, A trace formula and review of some estimates for resonances, in Microlocal analysis and Spectral Theory (Lucca, 1996), 377-437, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490, Kluwer Acad. Publ., Dordrecht, 1997. Zbl0877.35090MR1451399
  14. [SjV] J. Sjöstrand and G. Vodev, Asymptotics of the number of Rayleigh resonances, Math. Ann. 309 1997, 287-306. Zbl0890.35098MR1474193
  15. [SjZ] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, Journal of AMS 4(4) 1991, 729-769. Zbl0752.35046MR1115789
  16. [St1] P. Stefanov, Quasimodes and resonances: sharp lower bounds, Duke Math. J. 99 1999, 75-92. Zbl0952.47013MR1700740
  17. [St2] P. Stefanov, Lower bound of the number of the Rayleigh resonances for arbitrary body, Indiana Univ. Math. J. 49(2)( 2000), 405-426. Zbl0961.35098MR1777025
  18. [St3] P. Stefanov, Resonance expansions and Rayleigh waves, Math. Res. Lett., 8(1-2)( 2001), 105-124. Zbl0987.35097MR1825264
  19. [StV1] P. Stefanov and G. Vodev, Distribution of resonances for the Neumann problem in linear elasticity outside a strictly convex body, Duke Math. J. 78 1995, 677-714. Zbl0846.35139MR1334206
  20. [TZ1] S.-H. Tang and M. Zworski, From quasimodes to resonances, Math. Res. Lett., 5 1998, 261-272. Zbl0913.35101MR1637824
  21. [TZ2] S.-H. Tang and M. Zworski, Resonance expansions of scattered waves, Comm. Pure Appl. Math. 53(10)( 2000), 1305-1334. Zbl1032.35148MR1768812
  22. [V] G. Vodev, Sharp polynomial bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys. 146 1992, 39-49. Zbl0754.35105MR1125006
  23. [Ze] M. Zerzeri, Majoration du nombre des résonances près de l'axe reél pour une perturbation, à support compacte, abstraite, du laplacien, preprint, 2000-2001, Univ. Paris 13. MR1876413
  24. [Z1] M. Zworski, Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59 1989, 311-323. Zbl0705.35099MR1016891
  25. [Z2] M. Zworski, private communication, 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.