Weyl type upper bounds on the number of resonances near the real axis for trapped systems
Journées équations aux dérivées partielles (2001)
- page 1-16
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topStefanov, Plamen. "Weyl type upper bounds on the number of resonances near the real axis for trapped systems." Journées équations aux dérivées partielles (2001): 1-16. <http://eudml.org/doc/93410>.
@article{Stefanov2001,
abstract = {We study semiclassical resonances in a box $\Omega (h)$ of height $h^N$, $N\gg 1$. We show that the semiclassical wave front set of the resonant states (including the “generalized eigenfunctions”) is contained in the set $\mathcal \{T\}$ of the trapped bicharacteristics. We also show that for a suitable self-adjoint reference operator $P^\#(h)$ with discrete spectrum the number of resonances in $\Omega (h)$ is bounded by the number of eigenvalues of $P^\#(h)$ in an interval a bit larger than the projection of $\Omega (h)$ on the real line. As an application, we prove a Weyl type estimate of the number of resonances in $\Omega (h)$ in terms of the measure of $\mathcal \{T\}$. We prove a similar estimate in case of classical scattering by a metric and obstacle.},
author = {Stefanov, Plamen},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-16},
publisher = {Université de Nantes},
title = {Weyl type upper bounds on the number of resonances near the real axis for trapped systems},
url = {http://eudml.org/doc/93410},
year = {2001},
}
TY - JOUR
AU - Stefanov, Plamen
TI - Weyl type upper bounds on the number of resonances near the real axis for trapped systems
JO - Journées équations aux dérivées partielles
PY - 2001
PB - Université de Nantes
SP - 1
EP - 16
AB - We study semiclassical resonances in a box $\Omega (h)$ of height $h^N$, $N\gg 1$. We show that the semiclassical wave front set of the resonant states (including the “generalized eigenfunctions”) is contained in the set $\mathcal {T}$ of the trapped bicharacteristics. We also show that for a suitable self-adjoint reference operator $P^\#(h)$ with discrete spectrum the number of resonances in $\Omega (h)$ is bounded by the number of eigenvalues of $P^\#(h)$ in an interval a bit larger than the projection of $\Omega (h)$ on the real line. As an application, we prove a Weyl type estimate of the number of resonances in $\Omega (h)$ in terms of the measure of $\mathcal {T}$. We prove a similar estimate in case of classical scattering by a metric and obstacle.
LA - eng
UR - http://eudml.org/doc/93410
ER -
References
top- [B2] N. Burq, Lower bounds for shape resonances widths of long range Schrödinger operators, preprint. Zbl1013.35019MR1914456
- [B3] N. Burq, Semi-classical estimates for the resolvent in non-trappimg geometries, preprint. MR1876933
- [G] C. Gérard, Asymptotique des poles de la matrice de scattering pour deux obstacles strictement convex, Bull. Soc. Math. France, Mémoire n. 31, 116, 1988. Zbl0654.35081MR998698
- [DSj] M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, London Math. Society Lecture Notes Series, No. 268, Cambridge Univ. Press, 1999. Zbl0926.35002MR1735654
- [HSj] B. Helffer, J. Sjöstrand, Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.), 24-25, 1986. Zbl0631.35075MR871788
- [H] L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer-Verlag, Berlin, 1985. Zbl0601.35001MR404822
- [I] V. Ivrii, Microlocal Analysis and Precise Spectral Asymptotics, Springer-Verlag, Berlin, 1998. Zbl0906.35003MR1631419
- [K] T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, New York, 1966. Zbl0148.12601MR203473
- [LZ] K. Lin and M. Zworski, Resonances in chaotic scattering, www.math.berkeley.edu/~kkylin/resonances/.
- [MSj] R. Melrose and J. Sjöstrand, Singularities of boundary value problems. I, II. Comm. Pure Appl. Math. 31 1978, no. 5, 593-617, and 35 1982, no. 2, 129-168. Zbl0546.35083
- [Po] G. Popov, Quasi-modes for the Laplace operator and Glancing hypersurfaces, in: Proceedings of Conference on Microlocal analysis and Nonlinear Waves, Minnesota 1989, M. Beals, R. Melrose and J. Rauch eds., Springer Verlag, Berlin-Heidelberg-New York, 1991. Zbl0794.35030MR1120290
- [Sj1] J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J. 60(1) 1990, 1-57. Zbl0702.35188MR1047116
- [Sj2] J. Sjöstrand, A trace formula and review of some estimates for resonances, in Microlocal analysis and Spectral Theory (Lucca, 1996), 377-437, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490, Kluwer Acad. Publ., Dordrecht, 1997. Zbl0877.35090MR1451399
- [SjV] J. Sjöstrand and G. Vodev, Asymptotics of the number of Rayleigh resonances, Math. Ann. 309 1997, 287-306. Zbl0890.35098MR1474193
- [SjZ] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, Journal of AMS 4(4) 1991, 729-769. Zbl0752.35046MR1115789
- [St1] P. Stefanov, Quasimodes and resonances: sharp lower bounds, Duke Math. J. 99 1999, 75-92. Zbl0952.47013MR1700740
- [St2] P. Stefanov, Lower bound of the number of the Rayleigh resonances for arbitrary body, Indiana Univ. Math. J. 49(2)( 2000), 405-426. Zbl0961.35098MR1777025
- [St3] P. Stefanov, Resonance expansions and Rayleigh waves, Math. Res. Lett., 8(1-2)( 2001), 105-124. Zbl0987.35097MR1825264
- [StV1] P. Stefanov and G. Vodev, Distribution of resonances for the Neumann problem in linear elasticity outside a strictly convex body, Duke Math. J. 78 1995, 677-714. Zbl0846.35139MR1334206
- [TZ1] S.-H. Tang and M. Zworski, From quasimodes to resonances, Math. Res. Lett., 5 1998, 261-272. Zbl0913.35101MR1637824
- [TZ2] S.-H. Tang and M. Zworski, Resonance expansions of scattered waves, Comm. Pure Appl. Math. 53(10)( 2000), 1305-1334. Zbl1032.35148MR1768812
- [V] G. Vodev, Sharp polynomial bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys. 146 1992, 39-49. Zbl0754.35105MR1125006
- [Ze] M. Zerzeri, Majoration du nombre des résonances près de l'axe reél pour une perturbation, à support compacte, abstraite, du laplacien, preprint, 2000-2001, Univ. Paris 13. MR1876413
- [Z1] M. Zworski, Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59 1989, 311-323. Zbl0705.35099MR1016891
- [Z2] M. Zworski, private communication, 1992.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.