Geometrical methods in hydrodynamics

Adrian Constantin

Journées équations aux dérivées partielles (2001)

  • page 1-14
  • ISSN: 0752-0360

Abstract

top
We describe some recent results on a specific nonlinear hydrodynamical problem where the geometric approach gives insight into a variety of aspects.

How to cite

top

Constantin, Adrian. "Geometrical methods in hydrodynamics." Journées équations aux dérivées partielles (2001): 1-14. <http://eudml.org/doc/93413>.

@article{Constantin2001,
abstract = {We describe some recent results on a specific nonlinear hydrodynamical problem where the geometric approach gives insight into a variety of aspects.},
author = {Constantin, Adrian},
journal = {Journées équations aux dérivées partielles},
keywords = {existence of local solutions; geometric fluid mechanics; configuration space; rigorous study; unidirectional propagation of periodic shallow water waves; Camassa-Holm model; geodesic flow on the group of diffeomorphisms},
language = {eng},
pages = {1-14},
publisher = {Université de Nantes},
title = {Geometrical methods in hydrodynamics},
url = {http://eudml.org/doc/93413},
year = {2001},
}

TY - JOUR
AU - Constantin, Adrian
TI - Geometrical methods in hydrodynamics
JO - Journées équations aux dérivées partielles
PY - 2001
PB - Université de Nantes
SP - 1
EP - 14
AB - We describe some recent results on a specific nonlinear hydrodynamical problem where the geometric approach gives insight into a variety of aspects.
LA - eng
KW - existence of local solutions; geometric fluid mechanics; configuration space; rigorous study; unidirectional propagation of periodic shallow water waves; Camassa-Holm model; geodesic flow on the group of diffeomorphisms
UR - http://eudml.org/doc/93413
ER -

References

top
  1. [Ar] V. Arnold. Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits.Ann. Inst. Fourier (Grenoble), 16:319-361, 1966. Zbl0148.45301MR202082
  2. [Ar2] V. Arnold. Mathematical Methods of Classical Mechanics. Springer Verlag, New York, 1989. Zbl0386.70001MR997295
  3. [AK] V. Arnold and B. Khesin. Topological Methods in Hydrodynamics. Springer Verlag, New York, 1998. Zbl0902.76001MR1612569
  4. [BSS] R. Beals, D. Sattinger and J. Szmigielski. Multipeakons and a theorem of Stieltjes. Inverse Problems, 15:1-4, 1999. Zbl0923.35154MR1675325
  5. [Br] Y. Brenier. Minimal geodesics on groups of volume-preserving maps and generalized solutions to the Euler equations. Comm. Pure Appl. Math., 52:411-452, 1999. Zbl0910.35098MR1658919
  6. [CH] R. Camassa and D. Holm. An integrable shallow water equation with peaked solitons. Phys. Rev. Letters, 71:1661-1664, 1993. Zbl0972.35521MR1234453
  7. [AC] A. Constantin. A Lagrangian approximation to the water-wave problem. Appl. Math. Lett., to appear. Zbl0985.35069MR1849230
  8. [CE] A. Constantin and J. Escher. Well-posedness, global existence, and blow-up phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math., 51:475-504, 1998. Zbl0934.35153MR1604278
  9. [CK] A. Constantin and B. Kolev. On the geometric approach to the motion of inertial mechanical systems. Technical Report 6, Lund University, 2001. MR1930889
  10. [CM] A. Constantin and H. P. McKean. A shallow water equation on the circle. Comm. Pure Appl. Math., 52:949-982, 1999. Zbl0940.35177MR1686969
  11. [CMo] A. Constantin and L. Molinet. Global weak solutions for a shallow water equation. Comm. Math. Phys., 211:45-61, 2000. Zbl1002.35101MR1757005
  12. [CS] A. Constantin and W. Strauss. Stability of peakons. Comm. Pure Appl. Math., 53:603-610, 2000. Zbl1049.35149MR1737505
  13. [EM] D. Ebin and J. E. Marsden. Groups of diffeomorphisms and the notion of an incompressible fluid. Ann. of Math., 92:102-163, 1970. Zbl0211.57401MR271984
  14. [FF] A. S. Fokas and B. Fuchssteiner. Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D, 4:47-66, 1981. Zbl1194.37114MR636470
  15. [Ha] R. Hamilton. The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc., 7:65-222, 1982. Zbl0499.58003MR656198
  16. [HM] A. Himonas and G. Misiolek. The Cauchy problem for an integrable shallow-water equation. Differential and Integral Equations, 14:821-831, 2001. Zbl1009.35075MR1828326
  17. [Jo] R. S. Johnson. A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, 1997. Zbl0892.76001MR1629555
  18. [La] S. Lang. Fundamentals of Differential Geometry. Springer Verlag, New York, 1999. Zbl0932.53001MR1666820
  19. [LO] Yi Li and P. Olver. Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differential Equations, 162:27-63, 2000. Zbl0958.35119MR1741872
  20. [McK] H. P. McKean. Breakdown of a shallow water equation. Asian J. Math., 2:203-208, 1998. Zbl0959.35140MR1734131
  21. [Mil] J. Milnor. Remarks on infinite-dimensional Lie groups. In Relativity, Groups and Topology (Les Houches, 1983), pages 1009-1057. North-Holland, Amsterdam, 1984. Zbl0594.22009MR830252
  22. [Mi] G. Misiolek. A shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys., 24:203-208, 1998. Zbl0901.58022MR1491553
  23. [Ol] P. Olver. Applications of Lie Groups to Differential Equations. Springer Verlag, New York, 1993. Zbl0785.58003MR1240056
  24. [Sh] A. Shnirelman. Generalized fluid flows, their approximation and applications.Geom. Funct. Anal., 4:586-620, 1994. Zbl0851.76003MR1296569
  25. [Wu]S. Wu. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc., 12:445-495, 1999. Zbl0921.76017MR1641609

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.