Geometrical methods in hydrodynamics
Journées équations aux dérivées partielles (2001)
- page 1-14
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topConstantin, Adrian. "Geometrical methods in hydrodynamics." Journées équations aux dérivées partielles (2001): 1-14. <http://eudml.org/doc/93413>.
@article{Constantin2001,
abstract = {We describe some recent results on a specific nonlinear hydrodynamical problem where the geometric approach gives insight into a variety of aspects.},
author = {Constantin, Adrian},
journal = {Journées équations aux dérivées partielles},
keywords = {existence of local solutions; geometric fluid mechanics; configuration space; rigorous study; unidirectional propagation of periodic shallow water waves; Camassa-Holm model; geodesic flow on the group of diffeomorphisms},
language = {eng},
pages = {1-14},
publisher = {Université de Nantes},
title = {Geometrical methods in hydrodynamics},
url = {http://eudml.org/doc/93413},
year = {2001},
}
TY - JOUR
AU - Constantin, Adrian
TI - Geometrical methods in hydrodynamics
JO - Journées équations aux dérivées partielles
PY - 2001
PB - Université de Nantes
SP - 1
EP - 14
AB - We describe some recent results on a specific nonlinear hydrodynamical problem where the geometric approach gives insight into a variety of aspects.
LA - eng
KW - existence of local solutions; geometric fluid mechanics; configuration space; rigorous study; unidirectional propagation of periodic shallow water waves; Camassa-Holm model; geodesic flow on the group of diffeomorphisms
UR - http://eudml.org/doc/93413
ER -
References
top- [Ar] V. Arnold. Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits.Ann. Inst. Fourier (Grenoble), 16:319-361, 1966. Zbl0148.45301MR202082
- [Ar2] V. Arnold. Mathematical Methods of Classical Mechanics. Springer Verlag, New York, 1989. Zbl0386.70001MR997295
- [AK] V. Arnold and B. Khesin. Topological Methods in Hydrodynamics. Springer Verlag, New York, 1998. Zbl0902.76001MR1612569
- [BSS] R. Beals, D. Sattinger and J. Szmigielski. Multipeakons and a theorem of Stieltjes. Inverse Problems, 15:1-4, 1999. Zbl0923.35154MR1675325
- [Br] Y. Brenier. Minimal geodesics on groups of volume-preserving maps and generalized solutions to the Euler equations. Comm. Pure Appl. Math., 52:411-452, 1999. Zbl0910.35098MR1658919
- [CH] R. Camassa and D. Holm. An integrable shallow water equation with peaked solitons. Phys. Rev. Letters, 71:1661-1664, 1993. Zbl0972.35521MR1234453
- [AC] A. Constantin. A Lagrangian approximation to the water-wave problem. Appl. Math. Lett., to appear. Zbl0985.35069MR1849230
- [CE] A. Constantin and J. Escher. Well-posedness, global existence, and blow-up phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math., 51:475-504, 1998. Zbl0934.35153MR1604278
- [CK] A. Constantin and B. Kolev. On the geometric approach to the motion of inertial mechanical systems. Technical Report 6, Lund University, 2001. MR1930889
- [CM] A. Constantin and H. P. McKean. A shallow water equation on the circle. Comm. Pure Appl. Math., 52:949-982, 1999. Zbl0940.35177MR1686969
- [CMo] A. Constantin and L. Molinet. Global weak solutions for a shallow water equation. Comm. Math. Phys., 211:45-61, 2000. Zbl1002.35101MR1757005
- [CS] A. Constantin and W. Strauss. Stability of peakons. Comm. Pure Appl. Math., 53:603-610, 2000. Zbl1049.35149MR1737505
- [EM] D. Ebin and J. E. Marsden. Groups of diffeomorphisms and the notion of an incompressible fluid. Ann. of Math., 92:102-163, 1970. Zbl0211.57401MR271984
- [FF] A. S. Fokas and B. Fuchssteiner. Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D, 4:47-66, 1981. Zbl1194.37114MR636470
- [Ha] R. Hamilton. The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc., 7:65-222, 1982. Zbl0499.58003MR656198
- [HM] A. Himonas and G. Misiolek. The Cauchy problem for an integrable shallow-water equation. Differential and Integral Equations, 14:821-831, 2001. Zbl1009.35075MR1828326
- [Jo] R. S. Johnson. A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, 1997. Zbl0892.76001MR1629555
- [La] S. Lang. Fundamentals of Differential Geometry. Springer Verlag, New York, 1999. Zbl0932.53001MR1666820
- [LO] Yi Li and P. Olver. Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differential Equations, 162:27-63, 2000. Zbl0958.35119MR1741872
- [McK] H. P. McKean. Breakdown of a shallow water equation. Asian J. Math., 2:203-208, 1998. Zbl0959.35140MR1734131
- [Mil] J. Milnor. Remarks on infinite-dimensional Lie groups. In Relativity, Groups and Topology (Les Houches, 1983), pages 1009-1057. North-Holland, Amsterdam, 1984. Zbl0594.22009MR830252
- [Mi] G. Misiolek. A shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys., 24:203-208, 1998. Zbl0901.58022MR1491553
- [Ol] P. Olver. Applications of Lie Groups to Differential Equations. Springer Verlag, New York, 1993. Zbl0785.58003MR1240056
- [Sh] A. Shnirelman. Generalized fluid flows, their approximation and applications.Geom. Funct. Anal., 4:586-620, 1994. Zbl0851.76003MR1296569
- [Wu]S. Wu. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc., 12:445-495, 1999. Zbl0921.76017MR1641609
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.