Exotic galilean symmetry and non-commutative mechanics.
We describe some recent results on a specific nonlinear hydrodynamical problem where the geometric approach gives insight into a variety of aspects.
We survey two problems illustrating geometric-topological and Hamiltonian methods in fluid mechanics: energy relaxation of a magnetic field and conservation laws for ideal fluid motion. More details and results, as well as a guide to the literature on these topics can be found in [3].
The Ito equation is shown to be a geodesic flow of metric on the semidirect product space , where is the group of orientation preserving Sobolev diffeomorphisms of the circle. We also study a geodesic flow of a metric.