Regularity and geometric properties of solutions of the Einstein-Vacuum equations

Sergiu Klainerman; Igor Rodnianski

Journées équations aux dérivées partielles (2002)

  • Volume: 334, Issue: 2, page 1-14
  • ISSN: 0752-0360

Abstract

top
We review recent results concerning the study of rough solutions to the initial value problem for the Einstein vacuum equations expressed relative to wave coordinates. We develop new analytic methods based on Strichartz type inequalities which results in a gain of half a derivative relative to the classical result. Our methods blend paradifferential techniques with a geometric approach to the derivation of decay estimates. The latter allows us to take full advantage of the specific structure of the Einstein equations.

How to cite

top

Klainerman, Sergiu, and Rodnianski, Igor. "Regularity and geometric properties of solutions of the Einstein-Vacuum equations." Journées équations aux dérivées partielles 334.2 (2002): 1-14. <http://eudml.org/doc/93426>.

@article{Klainerman2002,
abstract = {We review recent results concerning the study of rough solutions to the initial value problem for the Einstein vacuum equations expressed relative to wave coordinates. We develop new analytic methods based on Strichartz type inequalities which results in a gain of half a derivative relative to the classical result. Our methods blend paradifferential techniques with a geometric approach to the derivation of decay estimates. The latter allows us to take full advantage of the specific structure of the Einstein equations.},
author = {Klainerman, Sergiu, Rodnianski, Igor},
journal = {Journées équations aux dérivées partielles},
keywords = {paradifferential techniques; Strichartz-type inequalities},
language = {eng},
number = {2},
pages = {1-14},
publisher = {Université de Nantes},
title = {Regularity and geometric properties of solutions of the Einstein-Vacuum equations},
url = {http://eudml.org/doc/93426},
volume = {334},
year = {2002},
}

TY - JOUR
AU - Klainerman, Sergiu
AU - Rodnianski, Igor
TI - Regularity and geometric properties of solutions of the Einstein-Vacuum equations
JO - Journées équations aux dérivées partielles
PY - 2002
PB - Université de Nantes
VL - 334
IS - 2
SP - 1
EP - 14
AB - We review recent results concerning the study of rough solutions to the initial value problem for the Einstein vacuum equations expressed relative to wave coordinates. We develop new analytic methods based on Strichartz type inequalities which results in a gain of half a derivative relative to the classical result. Our methods blend paradifferential techniques with a geometric approach to the derivation of decay estimates. The latter allows us to take full advantage of the specific structure of the Einstein equations.
LA - eng
KW - paradifferential techniques; Strichartz-type inequalities
UR - http://eudml.org/doc/93426
ER -

References

top
  1. [An-Mo] L. Andersson and V. MoncriefElliptic-hyperbolic systems and the Einstein equations. preprint MR1967177
  2. [Ba-Ch1] H. Bahouri and J. Y. Chemin. Équations d'ondes quasilinéaires et estimation de Strichartz. Amer. J. Math., vol. 121; (1999), pp. 1337-1777 Zbl0952.35073MR1719798
  3. [Ba-Ch2] H. Bahouri and J. Y. Chemin.Équations d'ondes quasilinéaires et effet dispersif. IMRN, vol. 21; (1999), pp. 1141-1178 Zbl0938.35106MR1728676
  4. [Br] Y. Choquet Bruhat. Théorème d'existence pour certains systèmes d'équations aux dérivées partielles nonlinéaires., Acta Math. 88 (1952), 141-225. Zbl0049.19201MR53338
  5. [Ch-Kl] D. Christodoulou and S. Klainerman. The Global Nonlinear Stability of the Minkowski Space. Princeton Mathematical Series, 41. Princeton University Press, 1993 Zbl0827.53055MR1316662
  6. [Ha-El] S. Hawking and G. Ellis. The large scale structure of spacetime. Cambridge Monographs on Mathematical Physics, 1973 Zbl0265.53054MR424186
  7. [H-K-M] Hughes, T. Kato and J. Marsden. Well posed quasilinear second order hyperbolic systems Arch. Rat. Mech. Anal. 63 (1976) no 3, 273-294. Zbl0361.35046MR420024
  8. [Kl1] S. Klainerman. A commuting vectorfield approach to Strichartz type inequalities and applications to quasilinear wave equations. IMRN, 2001, No 5, 221-274. Zbl0993.35022MR1820023
  9. [Kl2] S. Klainerman. PDE as a unified subject Special Volume GAFA 2000, 279-315 XV-12 Zbl1002.35002MR1826256
  10. [Kl-Ni] S. Klainerman and F. Nicolo. On the initial value problem in General Relativity. preprint 
  11. [Kl-Ro] S. Klainerman and I. Rodnianski. Improved local well posedness for quasilinear wave equations in dimension three. to appear in Duke Math. Journ. Zbl1031.35091MR1962783
  12. [Kl-Ro1] S. Klainerman and I. Rodnianski. Rough solutions of the Einstein-vacuum equations. preprint Zbl1008.35079MR1885093
  13. [Kl-Ro2] S. Klainerman and I. Rodnianski. The causal structure of microlocalized, rough, Einstein metrics. preprint Zbl1089.83007MR1885093
  14. [Kl-Ro3] S. Klainerman and I. Rodnianski. Ricci defects of microlocalized, rough, Einstein metrics. preprint Zbl1063.53051MR2052472
  15. [Li] H. Lindblad, Counterexamples to local existence for semilinear wave equations. AJM, vol. 118; (1996), pp. 1-16 Zbl0855.35080MR1375301
  16. [Po-Si] G. Ponce and T. Sideris. Local regularity of non linear wave equations in three space dimensions. CPDE, vol. 18; (1993), pp. 169-177 Zbl0803.35096MR1211729
  17. [Sm] H. Smith. A parametrix construction for wave equations with C 1, 1 coefficients. Annales de L'Institut Fourier, vol. 48; (1998), pp. 797-835 Zbl0974.35068MR1644105
  18. [Sm-So] H. Smith and C. Sogge. On Strichartz and eigenfunction estimates for low regularity metrics. Math. Res. Lett., vol. 1; (1994), pp. 729-737 Zbl0832.35018MR1306017
  19. [Sm-Ta1] H. Smith and D. Tataru. Sharp counterexamples for Strichartz estimates for low regularity metrics. Preprint Zbl1003.35075MR1909638
  20. [Sm-Ta2] H. Smith and D. Tataru. Sharp local well-posedness results for the nonlinear wave equation. Preprint 
  21. [Ta2] D. Tataru. Strichartz estimates for second order hyperbolic operators with non smooth coefficients. Preprint 
  22. [Ta1] D. Tataru. Strichartz estimates for operators with non smooth coefficients and the nonlinear wave equation.Amer. J. Math., vol. 122; (2000) Zbl0959.35125MR1749052

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.