The k -dimensional Duffin and Schaeffer conjecture

A. D. Pollington; R. C. Vaughan

Journal de théorie des nombres de Bordeaux (1989)

  • Volume: 1, Issue: 1, page 81-88
  • ISSN: 1246-7405

Abstract

top
We show that the Duffin and Schaeffer conjecture holds in all dimensions greater than one.

How to cite

top

Pollington, A. D., and Vaughan, R. C.. "The $k$-dimensional Duffin and Schaeffer conjecture." Journal de théorie des nombres de Bordeaux 1.1 (1989): 81-88. <http://eudml.org/doc/93503>.

@article{Pollington1989,
abstract = {We show that the Duffin and Schaeffer conjecture holds in all dimensions greater than one.},
author = {Pollington, A. D., Vaughan, R. C.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {diophantine approximation; $k$-dimensional; Lebesgues measure; Duffin and Schaeffer conjecture; metric Diophantine approximation; higher-dimensional analogue; Duffin-Schaeffer conjecture; inequalities},
language = {eng},
number = {1},
pages = {81-88},
publisher = {Université Bordeaux I},
title = {The $k$-dimensional Duffin and Schaeffer conjecture},
url = {http://eudml.org/doc/93503},
volume = {1},
year = {1989},
}

TY - JOUR
AU - Pollington, A. D.
AU - Vaughan, R. C.
TI - The $k$-dimensional Duffin and Schaeffer conjecture
JO - Journal de théorie des nombres de Bordeaux
PY - 1989
PB - Université Bordeaux I
VL - 1
IS - 1
SP - 81
EP - 88
AB - We show that the Duffin and Schaeffer conjecture holds in all dimensions greater than one.
LA - eng
KW - diophantine approximation; $k$-dimensional; Lebesgues measure; Duffin and Schaeffer conjecture; metric Diophantine approximation; higher-dimensional analogue; Duffin-Schaeffer conjecture; inequalities
UR - http://eudml.org/doc/93503
ER -

References

top
  1. 1 R.J. Duffin and A.C. Schaeffer, Khintchine's problem in metric Diophantine approximation, Duke Math. J.8 (1941), 243-255. Zbl0025.11002MR4859JFM67.0145.03
  2. 2 P. Erdös, On the distribution of convergents of almost all real numbers, J. Number Theory2 (1970), 425-441. Zbl0205.34902MR271058
  3. 3 P.X. Gallagher, Approximation by reduced fractions, J. Math. Soc. of Japan13 (1961), 342-345. Zbl0106.04106MR133297
  4. 4 Halberstam and Richert, "Sieve methods," Academic Press, London, 1974. Zbl0298.10026
  5. 5 V.G. Sprindzuk, "Metric theory of Diophantine approximations," V.H. Winston and Sons, Washington D.C., 1979. Zbl0482.10047
  6. 6 J.D. Vaaler, On the metric theory of Diophantine approximation, Pacific J. Math.76 (1978), 527-539. Zbl0352.10026MR506128
  7. 7 V.T. Vilchinski, On simultaneous approximations, Vesti Akad Navuk BSSR Ser Fiz.-Mat (1981), 41-47. Zbl0464.10040
  8. 8, The Duffin and Schaeffer conjecture and simultaneous approximations, Dokl. Akad. Nauk BSSR25 (1981), 780-783. Zbl0473.10034MR631115

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.