The metric simultaneous diophantine approximations over formal power series

Kae Inoue

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 1, page 151-161
  • ISSN: 1246-7405

Abstract

top
We discuss the metric theory of simultaneous diophantine approximations in the non-archimedean case. First, we show a Gallagher type 0-1 law. Then by using this theorem, we prove a Duffin-Schaeffer type theorem.

How to cite

top

Inoue, Kae. "The metric simultaneous diophantine approximations over formal power series." Journal de théorie des nombres de Bordeaux 15.1 (2003): 151-161. <http://eudml.org/doc/249091>.

@article{Inoue2003,
abstract = {We discuss the metric theory of simultaneous diophantine approximations in the non-archimedean case. First, we show a Gallagher type 0-1 law. Then by using this theorem, we prove a Duffin-Schaeffer type theorem.},
author = {Inoue, Kae},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {1},
pages = {151-161},
publisher = {Université Bordeaux I},
title = {The metric simultaneous diophantine approximations over formal power series},
url = {http://eudml.org/doc/249091},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Inoue, Kae
TI - The metric simultaneous diophantine approximations over formal power series
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 151
EP - 161
AB - We discuss the metric theory of simultaneous diophantine approximations in the non-archimedean case. First, we show a Gallagher type 0-1 law. Then by using this theorem, we prove a Duffin-Schaeffer type theorem.
LA - eng
UR - http://eudml.org/doc/249091
ER -

References

top
  1. [1] R.J. Duffin, A.C. Schaeffer, Khintchine's problem in metric diophantine approximation. Duke Math. J.8 (1941), 243-255. Zbl0025.11002MR4859JFM67.0145.03
  2. [2] G.W. Effinger, D.R. Hayes, Additive Number Theory of Polynomials Over a Finite Field. Oxford University Press, New York, 1991. Zbl0759.11032MR1143282
  3. [3] P.X. Gallagher, Approximation by reduced fractions. J. Math. Soc. Japan13 (1961), 342-345. Zbl0106.04106MR133297
  4. [4] K. Inoue, H. Nakada, On metric Diophantine approximation in positive characteristic, preprint. Zbl1049.11073MR2008007
  5. [5] M.G. Nadkarni, Basic Ergodic Theory. Birkäuser Verlag, Basel-Boston- Berlin, 1991. MR1725389
  6. [6] A.D. Pollington, R.C. Vaughan, The k-dimensional Duffin and Shaeffer conjecture. Sém. Théor. Nombres Bordeaux1 (1989), 81-87. Zbl0714.11048MR1050267
  7. [7] M. Rosen, Number Theory in Function Fields. Springer-Verlag, New York-Berlin-Heidelberg, 2001. Zbl1043.11079MR1876657
  8. [8] V.G. Sprindżuk, Metric Theory of Diophantine Approximations. John Wiley & Sons, New York -Toronto-London- Sydney, 1979. Zbl0482.10047MR548467

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.