On the Galois structure of the square root of the codifferent
Journal de théorie des nombres de Bordeaux (1991)
- Volume: 3, Issue: 1, page 73-92
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBurns, D.. "On the Galois structure of the square root of the codifferent." Journal de théorie des nombres de Bordeaux 3.1 (1991): 73-92. <http://eudml.org/doc/93537>.
@article{Burns1991,
abstract = {Let $L$ be a finite abelian extension of $\mathbb \{Q\}$, with $\mathcal \{O\}_L$ the ring of algebraic integers of $L$. We investigate the Galois structure of the unique fractional $\mathcal \{O\}_L$ -ideal which (if it exists) is unimodular with respect to the trace form of $L/ \mathbb \{Q\}$.},
author = {Burns, D.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {corps de nombres; formes quadratiques entières; fractional ideal; maximal order; finite abelian extension; trace form; Galois structure},
language = {eng},
number = {1},
pages = {73-92},
publisher = {Université Bordeaux I},
title = {On the Galois structure of the square root of the codifferent},
url = {http://eudml.org/doc/93537},
volume = {3},
year = {1991},
}
TY - JOUR
AU - Burns, D.
TI - On the Galois structure of the square root of the codifferent
JO - Journal de théorie des nombres de Bordeaux
PY - 1991
PB - Université Bordeaux I
VL - 3
IS - 1
SP - 73
EP - 92
AB - Let $L$ be a finite abelian extension of $\mathbb {Q}$, with $\mathcal {O}_L$ the ring of algebraic integers of $L$. We investigate the Galois structure of the unique fractional $\mathcal {O}_L$ -ideal which (if it exists) is unimodular with respect to the trace form of $L/ \mathbb {Q}$.
LA - eng
KW - corps de nombres; formes quadratiques entières; fractional ideal; maximal order; finite abelian extension; trace form; Galois structure
UR - http://eudml.org/doc/93537
ER -
References
top- [1] C. Bachoc, Sur les réseaux unimodulaires pour la forme Trace(x2), Proceedings of the Séminaire de Théorie des Nombres de Paris (1988-1989). Zbl0734.11029
- [2] C. Bachoc, Sur la structure hermitienne de la racine carrée de la codifférente, to appear. MR1242610
- [3] C. Bachoc et B. Erez, Forme trace et ramification sauvage, Proc. London Math. Soc.61 (1990), 209-226. Zbl0708.11059MR1063045
- [4] A-M. Bergé, Arithmétique d'une extension galoisienne à groupe d'inertie cyclique, Ann. Inst. Fourier28 (1978), 17-44. Zbl0377.12009MR513880
- [5] A-M. Bergé, A propos du genre des entiers d'une extension, Publications Math. Sc. Besançon (1979- 1980), 1-9. Zbl0472.12006
- [6] D. Burns, Canonical factorisability and a variant of Martinet's conjecture, to appear in J. London Math. Soc. (1991). Zbl0751.11053
- [7] B. Erez, Structure galoasienne et forme trace, Thèse, Genève1987; see also J. Algebra118 (1988), 438-446. Zbl0663.12015MR969683
- [8] B. Erez, A survey of recent work on the square root of the inverse different, to appear in the proceedings of the Journées arithmétiques, Luminy (1989). Zbl0752.11048MR1144319
- [9] B. Erez and M.J. Taylor, Hermitian modules in Galois extensions of number fields and Adams operations, to appear. Zbl0756.11035
- [10] A. Fröhlich, Galois module structure of algebraic integers, Ergebnisse der Mathematik 3. Folge, Bd. 1Berlin: Springer (1983). Zbl0501.12012MR717033
- [11] S. Lang, Algebraic Number Theory, Graduate Texts in Mathematics 110Springer-Verlag, Heidelberg (1986). Zbl0601.12001MR1282723
- [12] H.W. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. reine und angew. Math201 (1959), 119-149. Zbl0098.03403MR108479
- [13] G. Lettl, The ring of integers of an abelian number field, J. reine und angew. Math.400 (1990), 162-170. Zbl0703.11060MR1037435
- [14] I. Reiner, Maximal Orders, Academic Press, London (1975). Zbl0305.16001MR1972204
- [15] J-P. Serre, Corps Locaux, Hermann, Paris, (1962). MR354618
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.