On the Galois structure of the square root of the codifferent

D. Burns

Journal de théorie des nombres de Bordeaux (1991)

  • Volume: 3, Issue: 1, page 73-92
  • ISSN: 1246-7405

Abstract

top
Let L be a finite abelian extension of , with 𝒪 L the ring of algebraic integers of L . We investigate the Galois structure of the unique fractional 𝒪 L -ideal which (if it exists) is unimodular with respect to the trace form of L / .

How to cite

top

Burns, D.. "On the Galois structure of the square root of the codifferent." Journal de théorie des nombres de Bordeaux 3.1 (1991): 73-92. <http://eudml.org/doc/93537>.

@article{Burns1991,
abstract = {Let $L$ be a finite abelian extension of $\mathbb \{Q\}$, with $\mathcal \{O\}_L$ the ring of algebraic integers of $L$. We investigate the Galois structure of the unique fractional $\mathcal \{O\}_L$ -ideal which (if it exists) is unimodular with respect to the trace form of $L/ \mathbb \{Q\}$.},
author = {Burns, D.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {corps de nombres; formes quadratiques entières; fractional ideal; maximal order; finite abelian extension; trace form; Galois structure},
language = {eng},
number = {1},
pages = {73-92},
publisher = {Université Bordeaux I},
title = {On the Galois structure of the square root of the codifferent},
url = {http://eudml.org/doc/93537},
volume = {3},
year = {1991},
}

TY - JOUR
AU - Burns, D.
TI - On the Galois structure of the square root of the codifferent
JO - Journal de théorie des nombres de Bordeaux
PY - 1991
PB - Université Bordeaux I
VL - 3
IS - 1
SP - 73
EP - 92
AB - Let $L$ be a finite abelian extension of $\mathbb {Q}$, with $\mathcal {O}_L$ the ring of algebraic integers of $L$. We investigate the Galois structure of the unique fractional $\mathcal {O}_L$ -ideal which (if it exists) is unimodular with respect to the trace form of $L/ \mathbb {Q}$.
LA - eng
KW - corps de nombres; formes quadratiques entières; fractional ideal; maximal order; finite abelian extension; trace form; Galois structure
UR - http://eudml.org/doc/93537
ER -

References

top
  1. [1] C. Bachoc, Sur les réseaux unimodulaires pour la forme Trace(x2), Proceedings of the Séminaire de Théorie des Nombres de Paris (1988-1989). Zbl0734.11029
  2. [2] C. Bachoc, Sur la structure hermitienne de la racine carrée de la codifférente, to appear. MR1242610
  3. [3] C. Bachoc et B. Erez, Forme trace et ramification sauvage, Proc. London Math. Soc.61 (1990), 209-226. Zbl0708.11059MR1063045
  4. [4] A-M. Bergé, Arithmétique d'une extension galoisienne à groupe d'inertie cyclique, Ann. Inst. Fourier28 (1978), 17-44. Zbl0377.12009MR513880
  5. [5] A-M. Bergé, A propos du genre des entiers d'une extension, Publications Math. Sc. Besançon (1979- 1980), 1-9. Zbl0472.12006
  6. [6] D. Burns, Canonical factorisability and a variant of Martinet's conjecture, to appear in J. London Math. Soc. (1991). Zbl0751.11053
  7. [7] B. Erez, Structure galoasienne et forme trace, Thèse, Genève1987; see also J. Algebra118 (1988), 438-446. Zbl0663.12015MR969683
  8. [8] B. Erez, A survey of recent work on the square root of the inverse different, to appear in the proceedings of the Journées arithmétiques, Luminy (1989). Zbl0752.11048MR1144319
  9. [9] B. Erez and M.J. Taylor, Hermitian modules in Galois extensions of number fields and Adams operations, to appear. Zbl0756.11035
  10. [10] A. Fröhlich, Galois module structure of algebraic integers, Ergebnisse der Mathematik 3. Folge, Bd. 1Berlin: Springer (1983). Zbl0501.12012MR717033
  11. [11] S. Lang, Algebraic Number Theory, Graduate Texts in Mathematics 110Springer-Verlag, Heidelberg (1986). Zbl0601.12001MR1282723
  12. [12] H.W. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. reine und angew. Math201 (1959), 119-149. Zbl0098.03403MR108479
  13. [13] G. Lettl, The ring of integers of an abelian number field, J. reine und angew. Math.400 (1990), 162-170. Zbl0703.11060MR1037435
  14. [14] I. Reiner, Maximal Orders, Academic Press, London (1975). Zbl0305.16001MR1972204
  15. [15] J-P. Serre, Corps Locaux, Hermann, Paris, (1962). MR354618

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.