Oscillations d'un terme d'erreur lié à la fonction totient de Jordan
Journal de théorie des nombres de Bordeaux (1991)
- Volume: 3, Issue: 2, page 311-335
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topPétermann, Y.-F. S.. "Oscillations d'un terme d'erreur lié à la fonction totient de Jordan." Journal de théorie des nombres de Bordeaux 3.2 (1991): 311-335. <http://eudml.org/doc/93542>.
@article{Pétermann1991,
author = {Pétermann, Y.-F. S.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {error term estimates; Jordan totient function; algorithm; upper and lower bounds},
language = {fre},
number = {2},
pages = {311-335},
publisher = {Université Bordeaux I},
title = {Oscillations d'un terme d'erreur lié à la fonction totient de Jordan},
url = {http://eudml.org/doc/93542},
volume = {3},
year = {1991},
}
TY - JOUR
AU - Pétermann, Y.-F. S.
TI - Oscillations d'un terme d'erreur lié à la fonction totient de Jordan
JO - Journal de théorie des nombres de Bordeaux
PY - 1991
PB - Université Bordeaux I
VL - 3
IS - 2
SP - 311
EP - 335
LA - fre
KW - error term estimates; Jordan totient function; algorithm; upper and lower bounds
UR - http://eudml.org/doc/93542
ER -
References
top- [AS] S.D. Adhikari and A. Sankaranarayanan, On an error term related to the Jordan totient function Jk(n), J. Number Theory34 (1990), 178-188. Zbl0694.10041MR1042491
- [ES] P. Erdös and H.N. Shapiro, The existence of a distribution function for an error term related to the Euler function, Canad. J. Math.7 (1955), 63-75. Zbl0067.27601MR65580
- [M] H.L. Montgomery, Fluctuations in the mean of Euler's phi function, Proc. Indian Acad. Sci. (Math.Sci.)97 (1987), 239-245. Zbl0656.10042MR983617
- [P1] Y.-F.S. Pétermann, Existence of all the asymptotic λ-th means for certain arithmetical convolutions, Tsukuba J. Math.12 (1988), 241-248. Zbl0661.10056
- [P2] Y.-F.S. Pétermann, On the distribution of values of an error term related to the Euler function, Proc. Conf. Théorie des nombres Univ. Laval juillet 1987, 785-797, Walter de Gruyter, Berlin (1989). Zbl0685.10030MR1024603
- [P3] Y.-F.S. Pétermann, On the average behaviour of the largest divisor of n which is prime to a fixed integer k, prépublication.
- [W] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin (1963). Zbl0146.06003MR220685
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.