On 2 -class field towers of imaginary quadratic number fields

Franz Lemmermeyer

Journal de théorie des nombres de Bordeaux (1994)

  • Volume: 6, Issue: 2, page 261-272
  • ISSN: 1246-7405

Abstract

top
For a number field k , let k 1 denote its Hilbert 2 -class field, and put k 2 = ( k 1 ) 1 . We will determine all imaginary quadratic number fields k such that G = G a l ( k 2 / k ) is abelian or metacyclic, and we will give G in terms of generators and relations.

How to cite

top

Lemmermeyer, Franz. "On $2$-class field towers of imaginary quadratic number fields." Journal de théorie des nombres de Bordeaux 6.2 (1994): 261-272. <http://eudml.org/doc/93603>.

@article{Lemmermeyer1994,
abstract = {For a number field $k$, let $k^1$ denote its Hilbert $2$-class field, and put $k^2 = (k^1)^1$. We will determine all imaginary quadratic number fields $k$ such that $G = Gal(k^2/k)$ is abelian or metacyclic, and we will give $G$ in terms of generators and relations.},
author = {Lemmermeyer, Franz},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Hilbert 2-class field; Galois group; generators; relations},
language = {eng},
number = {2},
pages = {261-272},
publisher = {Université Bordeaux I},
title = {On $2$-class field towers of imaginary quadratic number fields},
url = {http://eudml.org/doc/93603},
volume = {6},
year = {1994},
}

TY - JOUR
AU - Lemmermeyer, Franz
TI - On $2$-class field towers of imaginary quadratic number fields
JO - Journal de théorie des nombres de Bordeaux
PY - 1994
PB - Université Bordeaux I
VL - 6
IS - 2
SP - 261
EP - 272
AB - For a number field $k$, let $k^1$ denote its Hilbert $2$-class field, and put $k^2 = (k^1)^1$. We will determine all imaginary quadratic number fields $k$ such that $G = Gal(k^2/k)$ is abelian or metacyclic, and we will give $G$ in terms of generators and relations.
LA - eng
KW - Hilbert 2-class field; Galois group; generators; relations
UR - http://eudml.org/doc/93603
ER -

References

top
  1. [1] E. Benjamin, C. Snyder, Number fields with 2-class groups isomorphic to (2, 2m), Austr. J. Math. 
  2. [2] M. Hall, J.K. Senior, The groups of order 2n(n ≤ 6);, Macmillan, New York (1964). Zbl0192.11701
  3. [3] H. Hasse, Zahlbericht, Physica Verlag, Würzburg, 1965. 
  4. [4] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Springer Verlag, Heidelberg. Zbl0668.12004
  5. [5] K. Iwasawa, A note on the group of units of an algebraic number field, . Math. pures appl.35 (1956), 189-192. Zbl0071.26504MR76803
  6. [6] P. Kaplan, Sur le 2-groupe des classes d'idéaux des corps quadratiques, J. reine angew. Math.283/284 (1974), 313-363. Zbl0337.12003MR404206
  7. [7] G. Karpilovsky, The Schur multiplier, London Math. Soc. monographs (1987), Oxford. Zbl0619.20001MR1200015
  8. [8] H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert's theorem 94, J. Number Theory8 (1976), 271-279. Zbl0334.12019MR417128
  9. [9] H. Koch, Über den 2-Klassenkörperturm eines quadratischen Zahlkörpers, J. reine angew. Math. 214/215 (1963), 201-206. Zbl0123.03904MR164945
  10. [10] F. Lemmermeyer, Die Konstruktion von Klassenkörpern, Diss. Univ. Heidelberg (1994). Zbl0956.11515
  11. [11] L. Rédei, H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. reine angew. Math. 170 (1933), 69-74. Zbl0007.39602
  12. [12] A. Scholz, Über die Lösbarkeit der Gleichung t2 - du2 = -4, Math. Z.39 (1934), 95-111. Zbl0009.29402MR1545490JFM60.0126.03
  13. [13] A. Scholz, Abelsche Durchkreuzung, Monatsh. Math. Phys.48 (1939), 340-352. Zbl0023.21101MR623JFM65.0066.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.