On -class field towers of imaginary quadratic number fields
Journal de théorie des nombres de Bordeaux (1994)
- Volume: 6, Issue: 2, page 261-272
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLemmermeyer, Franz. "On $2$-class field towers of imaginary quadratic number fields." Journal de théorie des nombres de Bordeaux 6.2 (1994): 261-272. <http://eudml.org/doc/93603>.
@article{Lemmermeyer1994,
abstract = {For a number field $k$, let $k^1$ denote its Hilbert $2$-class field, and put $k^2 = (k^1)^1$. We will determine all imaginary quadratic number fields $k$ such that $G = Gal(k^2/k)$ is abelian or metacyclic, and we will give $G$ in terms of generators and relations.},
author = {Lemmermeyer, Franz},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Hilbert 2-class field; Galois group; generators; relations},
language = {eng},
number = {2},
pages = {261-272},
publisher = {Université Bordeaux I},
title = {On $2$-class field towers of imaginary quadratic number fields},
url = {http://eudml.org/doc/93603},
volume = {6},
year = {1994},
}
TY - JOUR
AU - Lemmermeyer, Franz
TI - On $2$-class field towers of imaginary quadratic number fields
JO - Journal de théorie des nombres de Bordeaux
PY - 1994
PB - Université Bordeaux I
VL - 6
IS - 2
SP - 261
EP - 272
AB - For a number field $k$, let $k^1$ denote its Hilbert $2$-class field, and put $k^2 = (k^1)^1$. We will determine all imaginary quadratic number fields $k$ such that $G = Gal(k^2/k)$ is abelian or metacyclic, and we will give $G$ in terms of generators and relations.
LA - eng
KW - Hilbert 2-class field; Galois group; generators; relations
UR - http://eudml.org/doc/93603
ER -
References
top- [1] E. Benjamin, C. Snyder, Number fields with 2-class groups isomorphic to (2, 2m), Austr. J. Math.
- [2] M. Hall, J.K. Senior, The groups of order 2n(n ≤ 6);, Macmillan, New York (1964). Zbl0192.11701
- [3] H. Hasse, Zahlbericht, Physica Verlag, Würzburg, 1965.
- [4] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Springer Verlag, Heidelberg. Zbl0668.12004
- [5] K. Iwasawa, A note on the group of units of an algebraic number field, . Math. pures appl.35 (1956), 189-192. Zbl0071.26504MR76803
- [6] P. Kaplan, Sur le 2-groupe des classes d'idéaux des corps quadratiques, J. reine angew. Math.283/284 (1974), 313-363. Zbl0337.12003MR404206
- [7] G. Karpilovsky, The Schur multiplier, London Math. Soc. monographs (1987), Oxford. Zbl0619.20001MR1200015
- [8] H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert's theorem 94, J. Number Theory8 (1976), 271-279. Zbl0334.12019MR417128
- [9] H. Koch, Über den 2-Klassenkörperturm eines quadratischen Zahlkörpers, J. reine angew. Math. 214/215 (1963), 201-206. Zbl0123.03904MR164945
- [10] F. Lemmermeyer, Die Konstruktion von Klassenkörpern, Diss. Univ. Heidelberg (1994). Zbl0956.11515
- [11] L. Rédei, H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. reine angew. Math. 170 (1933), 69-74. Zbl0007.39602
- [12] A. Scholz, Über die Lösbarkeit der Gleichung t2 - du2 = -4, Math. Z.39 (1934), 95-111. Zbl0009.29402MR1545490JFM60.0126.03
- [13] A. Scholz, Abelsche Durchkreuzung, Monatsh. Math. Phys.48 (1939), 340-352. Zbl0023.21101MR623JFM65.0066.02
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.