Maximal unramified extensions of imaginary quadratic number fields of small conductors

Ken Yamamura

Journal de théorie des nombres de Bordeaux (1997)

  • Volume: 9, Issue: 2, page 405-448
  • ISSN: 1246-7405

Abstract

top
We determine the structures of the Galois groups Gal ( K u r / K ) of the maximal unramified extensions K u r of imaginary quadratic number fields K of conductors 420 ( 719 under the Generalized Riemann Hypothesis). For all such K , K u r is K , the Hilbert class field of K , the second Hilbert class field of K , or the third Hilbert class field of K . The use of Odlyzko’s discriminant bounds and information on the structure of class groups obtained by using the action of Galois groups on class groups is essential. We also use class number relations and a computer for calculation of class numbers of fields of low degrees in order to get class numbers of fields of higher degrees. Results on class field towers and the knowledge of the 2 -groups of orders 2 6 and linear groups over finite fields are also used.

How to cite

top

Yamamura, Ken. "Maximal unramified extensions of imaginary quadratic number fields of small conductors." Journal de théorie des nombres de Bordeaux 9.2 (1997): 405-448. <http://eudml.org/doc/248003>.

@article{Yamamura1997,
abstract = {We determine the structures of the Galois groups Gal$(K_\{ur\} / K)$ of the maximal unramified extensions $K_\{ur\}$ of imaginary quadratic number fields $K$ of conductors $\leqq 420 \, (\leqq 719$ under the Generalized Riemann Hypothesis). For all such $K$, $K_\{ur\}$ is $K$, the Hilbert class field of $K$, the second Hilbert class field of $K$, or the third Hilbert class field of $K$. The use of Odlyzko’s discriminant bounds and information on the structure of class groups obtained by using the action of Galois groups on class groups is essential. We also use class number relations and a computer for calculation of class numbers of fields of low degrees in order to get class numbers of fields of higher degrees. Results on class field towers and the knowledge of the $2$-groups of orders $\leqq 2^6$ and linear groups over finite fields are also used.},
author = {Yamamura, Ken},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {maximal unramified extension; imaginary quadratic number field; discriminant bounds; class field tower; structure of Galois groups; maximal unramified extensions of imaginary quadratic number fields},
language = {eng},
number = {2},
pages = {405-448},
publisher = {Université Bordeaux I},
title = {Maximal unramified extensions of imaginary quadratic number fields of small conductors},
url = {http://eudml.org/doc/248003},
volume = {9},
year = {1997},
}

TY - JOUR
AU - Yamamura, Ken
TI - Maximal unramified extensions of imaginary quadratic number fields of small conductors
JO - Journal de théorie des nombres de Bordeaux
PY - 1997
PB - Université Bordeaux I
VL - 9
IS - 2
SP - 405
EP - 448
AB - We determine the structures of the Galois groups Gal$(K_{ur} / K)$ of the maximal unramified extensions $K_{ur}$ of imaginary quadratic number fields $K$ of conductors $\leqq 420 \, (\leqq 719$ under the Generalized Riemann Hypothesis). For all such $K$, $K_{ur}$ is $K$, the Hilbert class field of $K$, the second Hilbert class field of $K$, or the third Hilbert class field of $K$. The use of Odlyzko’s discriminant bounds and information on the structure of class groups obtained by using the action of Galois groups on class groups is essential. We also use class number relations and a computer for calculation of class numbers of fields of low degrees in order to get class numbers of fields of higher degrees. Results on class field towers and the knowledge of the $2$-groups of orders $\leqq 2^6$ and linear groups over finite fields are also used.
LA - eng
KW - maximal unramified extension; imaginary quadratic number field; discriminant bounds; class field tower; structure of Galois groups; maximal unramified extensions of imaginary quadratic number fields
UR - http://eudml.org/doc/248003
ER -

References

top
  1. 1 S. Arno, The imaginary quadratic fields of class number 4, Acta Arith.60 (1992), no. 4, 321-334; MR 93b:11144. Zbl0760.11033MR1159349
  2. 2 S. Arno, M.L. Robinson, and F.S. Wheeler, The imaginary quadratic fields of small odd class numbers, preprint, 1993. MR1610549
  3. 3 J. Basmaji and I. Kiming, A table of A5-fields, On Artin's conjecture for odd 2-dimensional representations (G. Frey, ed.), Lecture Notes in Math., vol. 1585, Springer-Verlag, New York and Berlin, 1994, pp. 37-46, 122-141; MR 96e:11141. Zbl0837.11066MR1322317
  4. 4 E. Benjamin, Remarks concerning the 2-Hilbert class field of imaginary quadratic number fields, Bull Austral. Math. Soc.48 (1993), no. 3, 379-383; MR 94m:11133; Corrigenda, ibid.50 (1994), no. 2, 351-352. MR1248041
  5. 5 E. Benjamin, F. Lemmermeyer, and C. Snyder, Imaginary quadratic fields k with cyclic Cl2(k1), J. Number Theory67 (1997), no. 2, 229-245. Zbl0919.11074MR1486501
  6. 6 R. Brauer, Beziehung zwischen Klassenzahl von Teilkörpern eines galoisschen Körpers, Math. Nachr.4 (1951), no. 139, 158-174; MR 12, 593b; reprinted in Collected papers, vol. III, MIT Press, Cambridge, Mass.-London, 1980, pp. 497-513. Zbl0042.03801MR39760
  7. 7 D.A. Buell, Small class number and extreme values of L-functions of quadratic fields, Math. Comp.31 (1977), no. 139, 786-796; MR 55 #12684. Zbl0379.12001MR439802
  8. 8 R. Carter and P. Fong, The Sylow 2-subgroups of the finite classical groups, J. Algebra1 (1964), no. 2, 139-151; MR 29 #3548. Zbl0123.02901MR166271
  9. 9 C. Castela, Nombre de classes d'idéaux d'une extension diédrale d'un corps de nombres, C. R. Acad. Sci. Paris Sér. A-B287 (1978), no. 7, 483-486; MR 80c:12012. Zbl0395.12011MR512085
  10. 10 H. Cohen and H.W. Lenstra, Jr., Heuristics on class groups of number fields, Number Theory, Noordwijkerhout, 1983 (H. Jager, ed.), Lecture Notes in Math., vol. 1068, Springer-Verlag, Berlin and New York, 1984, pp. 33-62; MR 85j:11144. Zbl0558.12002MR756082
  11. 11 H. Cohn, A classical invitation to algebraic numbers and class fields, Universitext, Springer-Verlag, Berlin and New York, 1978; MR 80c:12001. Zbl0395.12001MR506156
  12. 12 F. Diaz y Diaz, Tables minorant la racine n-ième du discriminant d'un corps de degré n, Publications Mathématiques d'Orsay80, 6., Université de Paris-Sud, Département de Mathématique, Orsay, 1980; MR 82i:12007. Zbl0482.12003MR607864
  13. 13 H.J. Godwin, On quartic fields of signature one with small discriminant. II, Math. Comp.42 (1984), no. 166, 707-711; MR 85i:11092a; Corrigendum, ibid.43 (1984), no. 168, 621; MR 85i:11092b. Zbl0535.12003MR736462
  14. 14 ____, On totally complex quartic fields with small discriminant, Proc. Cambridge Philos. Soc.53 (1957), 1-4; MR 18, 565c. Zbl0077.04601MR82527
  15. 15 ____, On relations between cubic and quartic fields, Quart. J. Math. Oxford (2) 13 (1962), 206-212; Corrigendum, ibid. (3) 26 (1975), no. 104, 511-512; MR 52 #8078. MR387235
  16. 16 F. Hajir, Unramified elliptic units, thesis, MIT, 1993. Zbl0787.11023
  17. 17 M. Hall, Jr. and J.K. Senior, The groups of order 2n(n ≤ 6), The Macmillan Co., New York, 1964; MR 29 #5889. Zbl0192.11701
  18. 18 F. Halter-Koch, Einheiten und Divisorenklassen in Galois'schen algebraischen Zahlkörpern mit Diedergruppe der Ordnung 2l für eine ungerade Primzahll, Acta Arith.33 (1977), no. 4, 355-364; MR 56 #11955. Zbl0416.12003MR453695
  19. 19 F. Halter-Koch et N. Moser, Sur le nombre de classes de certaines extensions métacycliques sur Q ou sur un corps quadratiques imaginaires, J. Math. Soc. Japan30 (1978), no. 2, 237-248; MR 58 #5587. Zbl0368.12003MR485781
  20. 20 H. Hayashi, On elliptic units and class number of a certain dihedral extension of degree 2l, Acta Arith.45 (1985), no. 1, 35-45; MR 86m:11081. Zbl0499.12002MR765245
  21. 21 C.S. Herz, Construction of class fields, Seminar on Complex Multiplication, Chap. VII, Lecture Notes in Math., vol. 21, Springer-Verlag, Berlin and New York, 1966. MR201394
  22. 22 B. Huppert, Endliche Gruppen I, Die Grundlehren der math. Wiss., Bd. 134, Springer-Verlag, Berlin and New York, 1967; MR 37 #302. Zbl0217.07201MR224703
  23. 23 A. Jehanne, Sur les extensions de Q à groupe de Galois S4 et S4, Acta Arith.70 (1995), no. 3, 259-276; MR 95m:11127. Zbl0829.11059MR1316479
  24. 24 G. Kientega and P. Barrucand, On quartic fields with symmetric group, Number theory (R. A. Mollin, ed.), de Gruyter, Berlin, 1990, pp. 287-297; MR 92e:11113. Zbl0716.11050MR1106668
  25. 25 H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert's Theorem 94, J. Number Theory8 (1976), no. 3, 271-279; MR 54 #5188. Zbl0334.12019MR417128
  26. 26 T. Kondo, Algebraic number fields with the discriminant equal to that of a quadratic number field, J. Math. Soc. Japan47 (1995), no. 1, 31-36; MR 95h:11121. Zbl0865.11074MR1304187
  27. 27 S. Kuroda, Über die Klassenzahlen algebraischer Zahlkörper, Nagoya Math. J.1 (1950), 1-10; MR 12, 593a. Zbl0037.16101MR39759
  28. 28 F. Lemmermeyer, Kuroda's class number formula, Acta Arith.66 (1994), no. 3, 245-260; MR 95f:11090. Zbl0807.11052MR1276992
  29. 29 ____, On 2-class field towers of imaginary quadratic number fields, J. Théor. Nombres Bordeaux6 (1994), no. 2, 261-272; MR 96k:11136. MR1360645
  30. 30 ____, On unramified quaternion extension of imaginary quadratic number fields, J. Théor. Nombres Bordeaux9 (1997), no. 1, 51-68. MR1469661
  31. 31 ____, On 2-Class field towers of some imaginary quadratic number fields, Abh. Math. Sem. Univ. Hamburg67 (1997), 205-214. Zbl0919.11075MR1481537
  32. 32 ____, Private communication, 1996. 
  33. 33 J. Martinet, Corps de nombres de classes 1, Séminaire de Théorie des Nombres1977-1978, Exp. No. 12, CNRS, Talence, 1978; MR 80k:12009. Zbl0399.12002MR550272
  34. 34 ____, Petits discriminants des corps de nombres, Number theory days, 1980 (Exeter, 1980), London Math. Soc. Lecture Note Ser.56, Cambridge Univ. Press, Cambridge, New York, 1982, pp. 151-193; MR 84g:12009. MR697261
  35. 35 J.M. Masley, Class numbers of real cyclic number fields with small conductor, Compositio Math.37 (1978), no. 3, 297-319; MR 80e:12005. Zbl0428.12003MR511747
  36. 36 N. Moser, Unités et nombre de classes d'une extension galoisienne diédrale de Q, Abh. Math. Sem. Univ. Hamburg48 (1979), 54-75; MR 81h:12009. Zbl0387.12005MR537446
  37. 37 A. Nomura, On the existence of unramified p-extensions, Osaka J. Math.28 (1991), no. 1, 55-62; MR 92e:11115. Zbl0722.11055MR1096927
  38. 38 A.M. Odlyzko, Discriminant bounds, (unpublished tables), Nov. 29th 1976. 
  39. 39 ____, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 1, 119-141; MR 91i:11154. Zbl0722.11054MR1061762
  40. 40 J. Oesterlé, Nombres de classes de corps quadratiques imaginaires, Sém. Bourbaki1983-1984, Exp. 631, 14pp; MR 86k:11064. Zbl0551.12003MR768967
  41. 41 M. Olivier, Corps sextique primitifs, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 4, 757-767; MR 92a:11123. Zbl0734.11054MR1096589
  42. 42 T.W. Sag and J.W. Wamsley, Minimal presentations for groups of order 2n, n ≦ 6, J. Austral. Math. Soc.15 (1973), 461-469; MR 49 #406. Zbl0267.20028
  43. 43 R. Schoof, Private communication, 1996. 
  44. 44 A. Schwarz, M. Pohst and F. Diaz y Diaz, A table of quintic number fields, Math. Comp.63 (1994), no. 207, 361-374; MR 94i:11108. Zbl0822.11087MR1219705
  45. 45 J.-P. Serre, Modular forms of weight one and Galois representations, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) (A. Fröhlich, ed.), Academic Press, London, 1977, pp. 193-268; MR 56 #8497; repreinted in Collected papres, vol. III, Springer-Verlag, New York and Berlin, 1986, pp. 292-367. Zbl0366.10022MR450201
  46. 46 ____, Topics in Galois theory, Research Notes in Math., vol. 1, Jones and Bartlett Publishers, Boston, MA, 1992; MR 94d:12006. Zbl0746.12001MR1162313
  47. 47 M.W. Short, The primitive soluble permutation groups of degree less than 256, Lecture Notes in Math., vol. 1519, Springer-Verlag, Berlin and New York, 1992; MR 93g:20006. Zbl0752.20001MR1176516
  48. 48 A.G. Stephens and H.C. Williams, Computation of real quadratic fields with class number one, Math. Comp.51 (1988), no. 184, 809-824; MR 90b:11106. Zbl0699.12006MR958644
  49. 49 O. Taussky, A remark on the class field tower, J. London Math. Soc.12 (1937), 82-85. Zbl0016.20002JFM63.0144.03
  50. 50 F. van der Linden, Class number computations of real abelian number fields, Math. Comp.39 (1982), no. 160, 693-707; MR 84e:12005. Zbl0505.12010MR669662
  51. 51 H. Wada, On the class number and the unit group of certain algebraic number fields, J. Fac. Sci. Univ. Tokyo Sect. IA 13 (1966), 201-209; MR 35 #5414. Zbl0158.30103MR214565
  52. 52 C. Wagner, Class number 5, 6 and 7, Math. Comp.65 (1996), no. 214, 785-800; MR 96g:11135. Zbl0857.11057MR1333327
  53. 53 L.C. Washington, Introduction to Cyclotomic Fields, Graduate Text in Math., vol. 83, Springer-Verlag, Berlin and New York, 1982; MR 85g:11101. Zbl0484.12001MR718674
  54. 54 Y. Yamamoto, Divisibility by 16 of class numbers of quadratic fields whose 2-class groups are cyclic, Osaka J. Math.21 (1984), no. 1, 1-22; MR 85g:11092. Zbl0535.12002MR736966
  55. 55 K. Yamamura, On unramified Galois extensions of real quadratic number fields, Osaka J. Math.23 (1986), no. 2, 471-486; MR 88a:11112. Zbl0609.12006MR856901
  56. 56 ____, Some analogue of Hilbert's irreducibility theorem and the distribution of algebraic number fields, J. Fac. Sci. Univ. Tokyo Sect. IA 38 (1991), no. 1, 99-135; MR 92e:11132. Zbl0747.14001MR1104367
  57. 57 ____, The determination of the imaginary abelian number fields with class number one, Math. Comp.62 (1994), no. 206, 899-921; MR 94g:11096. Zbl0798.11046MR1218347
  58. 58 ____, The maximal unramified extensions of the imaginary quadratic number fields with class number two, J. Number Theory60 (1996), no. 2, 42-50; MR 97g:11119. Zbl0865.11077MR1405724
  59. 59 ____, Determination of the non-CM imaginary normal octic number fields with class number one, submitted for publication. 
  60. 60 ____, Real quadratic number fields with class number one having an unramified An-extension, in preparation. 
  61. 61 K. Yamazaki, Computations of Galois groups, Proc. Symp. Group theory and its application (T. Kondo, ed.), 1981, pp. 9-57. (Japanese) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.