Maximal unramified extensions of imaginary quadratic number fields of small conductors
Journal de théorie des nombres de Bordeaux (1997)
- Volume: 9, Issue: 2, page 405-448
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topYamamura, Ken. "Maximal unramified extensions of imaginary quadratic number fields of small conductors." Journal de théorie des nombres de Bordeaux 9.2 (1997): 405-448. <http://eudml.org/doc/248003>.
@article{Yamamura1997,
abstract = {We determine the structures of the Galois groups Gal$(K_\{ur\} / K)$ of the maximal unramified extensions $K_\{ur\}$ of imaginary quadratic number fields $K$ of conductors $\leqq 420 \, (\leqq 719$ under the Generalized Riemann Hypothesis). For all such $K$, $K_\{ur\}$ is $K$, the Hilbert class field of $K$, the second Hilbert class field of $K$, or the third Hilbert class field of $K$. The use of Odlyzko’s discriminant bounds and information on the structure of class groups obtained by using the action of Galois groups on class groups is essential. We also use class number relations and a computer for calculation of class numbers of fields of low degrees in order to get class numbers of fields of higher degrees. Results on class field towers and the knowledge of the $2$-groups of orders $\leqq 2^6$ and linear groups over finite fields are also used.},
author = {Yamamura, Ken},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {maximal unramified extension; imaginary quadratic number field; discriminant bounds; class field tower; structure of Galois groups; maximal unramified extensions of imaginary quadratic number fields},
language = {eng},
number = {2},
pages = {405-448},
publisher = {Université Bordeaux I},
title = {Maximal unramified extensions of imaginary quadratic number fields of small conductors},
url = {http://eudml.org/doc/248003},
volume = {9},
year = {1997},
}
TY - JOUR
AU - Yamamura, Ken
TI - Maximal unramified extensions of imaginary quadratic number fields of small conductors
JO - Journal de théorie des nombres de Bordeaux
PY - 1997
PB - Université Bordeaux I
VL - 9
IS - 2
SP - 405
EP - 448
AB - We determine the structures of the Galois groups Gal$(K_{ur} / K)$ of the maximal unramified extensions $K_{ur}$ of imaginary quadratic number fields $K$ of conductors $\leqq 420 \, (\leqq 719$ under the Generalized Riemann Hypothesis). For all such $K$, $K_{ur}$ is $K$, the Hilbert class field of $K$, the second Hilbert class field of $K$, or the third Hilbert class field of $K$. The use of Odlyzko’s discriminant bounds and information on the structure of class groups obtained by using the action of Galois groups on class groups is essential. We also use class number relations and a computer for calculation of class numbers of fields of low degrees in order to get class numbers of fields of higher degrees. Results on class field towers and the knowledge of the $2$-groups of orders $\leqq 2^6$ and linear groups over finite fields are also used.
LA - eng
KW - maximal unramified extension; imaginary quadratic number field; discriminant bounds; class field tower; structure of Galois groups; maximal unramified extensions of imaginary quadratic number fields
UR - http://eudml.org/doc/248003
ER -
References
top- 1 S. Arno, The imaginary quadratic fields of class number 4, Acta Arith.60 (1992), no. 4, 321-334; MR 93b:11144. Zbl0760.11033MR1159349
- 2 S. Arno, M.L. Robinson, and F.S. Wheeler, The imaginary quadratic fields of small odd class numbers, preprint, 1993. MR1610549
- 3 J. Basmaji and I. Kiming, A table of A5-fields, On Artin's conjecture for odd 2-dimensional representations (G. Frey, ed.), Lecture Notes in Math., vol. 1585, Springer-Verlag, New York and Berlin, 1994, pp. 37-46, 122-141; MR 96e:11141. Zbl0837.11066MR1322317
- 4 E. Benjamin, Remarks concerning the 2-Hilbert class field of imaginary quadratic number fields, Bull Austral. Math. Soc.48 (1993), no. 3, 379-383; MR 94m:11133; Corrigenda, ibid.50 (1994), no. 2, 351-352. MR1248041
- 5 E. Benjamin, F. Lemmermeyer, and C. Snyder, Imaginary quadratic fields k with cyclic Cl2(k1), J. Number Theory67 (1997), no. 2, 229-245. Zbl0919.11074MR1486501
- 6 R. Brauer, Beziehung zwischen Klassenzahl von Teilkörpern eines galoisschen Körpers, Math. Nachr.4 (1951), no. 139, 158-174; MR 12, 593b; reprinted in Collected papers, vol. III, MIT Press, Cambridge, Mass.-London, 1980, pp. 497-513. Zbl0042.03801MR39760
- 7 D.A. Buell, Small class number and extreme values of L-functions of quadratic fields, Math. Comp.31 (1977), no. 139, 786-796; MR 55 #12684. Zbl0379.12001MR439802
- 8 R. Carter and P. Fong, The Sylow 2-subgroups of the finite classical groups, J. Algebra1 (1964), no. 2, 139-151; MR 29 #3548. Zbl0123.02901MR166271
- 9 C. Castela, Nombre de classes d'idéaux d'une extension diédrale d'un corps de nombres, C. R. Acad. Sci. Paris Sér. A-B287 (1978), no. 7, 483-486; MR 80c:12012. Zbl0395.12011MR512085
- 10 H. Cohen and H.W. Lenstra, Jr., Heuristics on class groups of number fields, Number Theory, Noordwijkerhout, 1983 (H. Jager, ed.), Lecture Notes in Math., vol. 1068, Springer-Verlag, Berlin and New York, 1984, pp. 33-62; MR 85j:11144. Zbl0558.12002MR756082
- 11 H. Cohn, A classical invitation to algebraic numbers and class fields, Universitext, Springer-Verlag, Berlin and New York, 1978; MR 80c:12001. Zbl0395.12001MR506156
- 12 F. Diaz y Diaz, Tables minorant la racine n-ième du discriminant d'un corps de degré n, Publications Mathématiques d'Orsay80, 6., Université de Paris-Sud, Département de Mathématique, Orsay, 1980; MR 82i:12007. Zbl0482.12003MR607864
- 13 H.J. Godwin, On quartic fields of signature one with small discriminant. II, Math. Comp.42 (1984), no. 166, 707-711; MR 85i:11092a; Corrigendum, ibid.43 (1984), no. 168, 621; MR 85i:11092b. Zbl0535.12003MR736462
- 14 ____, On totally complex quartic fields with small discriminant, Proc. Cambridge Philos. Soc.53 (1957), 1-4; MR 18, 565c. Zbl0077.04601MR82527
- 15 ____, On relations between cubic and quartic fields, Quart. J. Math. Oxford (2) 13 (1962), 206-212; Corrigendum, ibid. (3) 26 (1975), no. 104, 511-512; MR 52 #8078. MR387235
- 16 F. Hajir, Unramified elliptic units, thesis, MIT, 1993. Zbl0787.11023
- 17 M. Hall, Jr. and J.K. Senior, The groups of order 2n(n ≤ 6), The Macmillan Co., New York, 1964; MR 29 #5889. Zbl0192.11701
- 18 F. Halter-Koch, Einheiten und Divisorenklassen in Galois'schen algebraischen Zahlkörpern mit Diedergruppe der Ordnung 2l für eine ungerade Primzahll, Acta Arith.33 (1977), no. 4, 355-364; MR 56 #11955. Zbl0416.12003MR453695
- 19 F. Halter-Koch et N. Moser, Sur le nombre de classes de certaines extensions métacycliques sur Q ou sur un corps quadratiques imaginaires, J. Math. Soc. Japan30 (1978), no. 2, 237-248; MR 58 #5587. Zbl0368.12003MR485781
- 20 H. Hayashi, On elliptic units and class number of a certain dihedral extension of degree 2l, Acta Arith.45 (1985), no. 1, 35-45; MR 86m:11081. Zbl0499.12002MR765245
- 21 C.S. Herz, Construction of class fields, Seminar on Complex Multiplication, Chap. VII, Lecture Notes in Math., vol. 21, Springer-Verlag, Berlin and New York, 1966. MR201394
- 22 B. Huppert, Endliche Gruppen I, Die Grundlehren der math. Wiss., Bd. 134, Springer-Verlag, Berlin and New York, 1967; MR 37 #302. Zbl0217.07201MR224703
- 23 A. Jehanne, Sur les extensions de Q à groupe de Galois S4 et S4, Acta Arith.70 (1995), no. 3, 259-276; MR 95m:11127. Zbl0829.11059MR1316479
- 24 G. Kientega and P. Barrucand, On quartic fields with symmetric group, Number theory (R. A. Mollin, ed.), de Gruyter, Berlin, 1990, pp. 287-297; MR 92e:11113. Zbl0716.11050MR1106668
- 25 H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert's Theorem 94, J. Number Theory8 (1976), no. 3, 271-279; MR 54 #5188. Zbl0334.12019MR417128
- 26 T. Kondo, Algebraic number fields with the discriminant equal to that of a quadratic number field, J. Math. Soc. Japan47 (1995), no. 1, 31-36; MR 95h:11121. Zbl0865.11074MR1304187
- 27 S. Kuroda, Über die Klassenzahlen algebraischer Zahlkörper, Nagoya Math. J.1 (1950), 1-10; MR 12, 593a. Zbl0037.16101MR39759
- 28 F. Lemmermeyer, Kuroda's class number formula, Acta Arith.66 (1994), no. 3, 245-260; MR 95f:11090. Zbl0807.11052MR1276992
- 29 ____, On 2-class field towers of imaginary quadratic number fields, J. Théor. Nombres Bordeaux6 (1994), no. 2, 261-272; MR 96k:11136. MR1360645
- 30 ____, On unramified quaternion extension of imaginary quadratic number fields, J. Théor. Nombres Bordeaux9 (1997), no. 1, 51-68. MR1469661
- 31 ____, On 2-Class field towers of some imaginary quadratic number fields, Abh. Math. Sem. Univ. Hamburg67 (1997), 205-214. Zbl0919.11075MR1481537
- 32 ____, Private communication, 1996.
- 33 J. Martinet, Corps de nombres de classes 1, Séminaire de Théorie des Nombres1977-1978, Exp. No. 12, CNRS, Talence, 1978; MR 80k:12009. Zbl0399.12002MR550272
- 34 ____, Petits discriminants des corps de nombres, Number theory days, 1980 (Exeter, 1980), London Math. Soc. Lecture Note Ser.56, Cambridge Univ. Press, Cambridge, New York, 1982, pp. 151-193; MR 84g:12009. MR697261
- 35 J.M. Masley, Class numbers of real cyclic number fields with small conductor, Compositio Math.37 (1978), no. 3, 297-319; MR 80e:12005. Zbl0428.12003MR511747
- 36 N. Moser, Unités et nombre de classes d'une extension galoisienne diédrale de Q, Abh. Math. Sem. Univ. Hamburg48 (1979), 54-75; MR 81h:12009. Zbl0387.12005MR537446
- 37 A. Nomura, On the existence of unramified p-extensions, Osaka J. Math.28 (1991), no. 1, 55-62; MR 92e:11115. Zbl0722.11055MR1096927
- 38 A.M. Odlyzko, Discriminant bounds, (unpublished tables), Nov. 29th 1976.
- 39 ____, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 1, 119-141; MR 91i:11154. Zbl0722.11054MR1061762
- 40 J. Oesterlé, Nombres de classes de corps quadratiques imaginaires, Sém. Bourbaki1983-1984, Exp. 631, 14pp; MR 86k:11064. Zbl0551.12003MR768967
- 41 M. Olivier, Corps sextique primitifs, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 4, 757-767; MR 92a:11123. Zbl0734.11054MR1096589
- 42 T.W. Sag and J.W. Wamsley, Minimal presentations for groups of order 2n, n ≦ 6, J. Austral. Math. Soc.15 (1973), 461-469; MR 49 #406. Zbl0267.20028
- 43 R. Schoof, Private communication, 1996.
- 44 A. Schwarz, M. Pohst and F. Diaz y Diaz, A table of quintic number fields, Math. Comp.63 (1994), no. 207, 361-374; MR 94i:11108. Zbl0822.11087MR1219705
- 45 J.-P. Serre, Modular forms of weight one and Galois representations, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) (A. Fröhlich, ed.), Academic Press, London, 1977, pp. 193-268; MR 56 #8497; repreinted in Collected papres, vol. III, Springer-Verlag, New York and Berlin, 1986, pp. 292-367. Zbl0366.10022MR450201
- 46 ____, Topics in Galois theory, Research Notes in Math., vol. 1, Jones and Bartlett Publishers, Boston, MA, 1992; MR 94d:12006. Zbl0746.12001MR1162313
- 47 M.W. Short, The primitive soluble permutation groups of degree less than 256, Lecture Notes in Math., vol. 1519, Springer-Verlag, Berlin and New York, 1992; MR 93g:20006. Zbl0752.20001MR1176516
- 48 A.G. Stephens and H.C. Williams, Computation of real quadratic fields with class number one, Math. Comp.51 (1988), no. 184, 809-824; MR 90b:11106. Zbl0699.12006MR958644
- 49 O. Taussky, A remark on the class field tower, J. London Math. Soc.12 (1937), 82-85. Zbl0016.20002JFM63.0144.03
- 50 F. van der Linden, Class number computations of real abelian number fields, Math. Comp.39 (1982), no. 160, 693-707; MR 84e:12005. Zbl0505.12010MR669662
- 51 H. Wada, On the class number and the unit group of certain algebraic number fields, J. Fac. Sci. Univ. Tokyo Sect. IA 13 (1966), 201-209; MR 35 #5414. Zbl0158.30103MR214565
- 52 C. Wagner, Class number 5, 6 and 7, Math. Comp.65 (1996), no. 214, 785-800; MR 96g:11135. Zbl0857.11057MR1333327
- 53 L.C. Washington, Introduction to Cyclotomic Fields, Graduate Text in Math., vol. 83, Springer-Verlag, Berlin and New York, 1982; MR 85g:11101. Zbl0484.12001MR718674
- 54 Y. Yamamoto, Divisibility by 16 of class numbers of quadratic fields whose 2-class groups are cyclic, Osaka J. Math.21 (1984), no. 1, 1-22; MR 85g:11092. Zbl0535.12002MR736966
- 55 K. Yamamura, On unramified Galois extensions of real quadratic number fields, Osaka J. Math.23 (1986), no. 2, 471-486; MR 88a:11112. Zbl0609.12006MR856901
- 56 ____, Some analogue of Hilbert's irreducibility theorem and the distribution of algebraic number fields, J. Fac. Sci. Univ. Tokyo Sect. IA 38 (1991), no. 1, 99-135; MR 92e:11132. Zbl0747.14001MR1104367
- 57 ____, The determination of the imaginary abelian number fields with class number one, Math. Comp.62 (1994), no. 206, 899-921; MR 94g:11096. Zbl0798.11046MR1218347
- 58 ____, The maximal unramified extensions of the imaginary quadratic number fields with class number two, J. Number Theory60 (1996), no. 2, 42-50; MR 97g:11119. Zbl0865.11077MR1405724
- 59 ____, Determination of the non-CM imaginary normal octic number fields with class number one, submitted for publication.
- 60 ____, Real quadratic number fields with class number one having an unramified An-extension, in preparation.
- 61 K. Yamazaki, Computations of Galois groups, Proc. Symp. Group theory and its application (T. Kondo, ed.), 1981, pp. 9-57. (Japanese)
Citations in EuDML Documents
top- Ken Yamamura, Maximal unramified extensions of imaginary quadratic number fields of small conductors, II
- Yasushi Mizusawa, On the maximal unramified pro-2-extension over the cyclotomic -extension of an imaginary quadratic field
- Ken Yamamura, Determination of the imaginary normal octic number fields with class number one which are not CM-fields
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.